早教吧 育儿知识 作业答案 考试题库 百科 知识分享

微积分(映射的相关问题)两个集合A与B之间如果存在一一对应,则称集合A与B等势,例如,设A是正奇数集合,B是正偶数集合,如果定义从A到B的映射T:T(2n+1)=2n+2,其中n为任一自然数,则T是A与B之

题目详情
微积分(映射的相关问题)
两个集合A与B之间如果存在一一对应,则称集合A与B等势,例如,设A是正奇数集合,B是正偶数集合,如果定义从A到B的映射T:T(2n+1)=2n+2,其中n为任一自然数,则T是A与B之间的一一对应,因此这两个集合等势.试说明下列数集是等势:(1)整数集合Z与自然数集N;(2)区间(1,2)与区间(3,5).
▼优质解答
答案和解析
因为自然数集包含整数集,所以整数集合中的每一个元素都能在自然数集中找到相应的数,(Z1=N1-1:1对应1-1)所以等势,
第二个问题,他没有说对应法则,你可以自己建立映射,1对应3,2对应5,这样不就等势了?
两个集合A与B之间如果存在一一对应,则称集合A与B等势
这个是你自己提到的