早教吧作业答案频道 -->数学-->
求n(n-1)(n-2).(n-k)的导数
题目详情
求n(n-1)(n-2).(n-k)的导数
▼优质解答
答案和解析
An=n!(1-1/1!+1/2!-1/3!+...+(-1)^n*1/n!)
一会儿回来提供三种证明思路
思路一:数学归纳法.这个没什么可说.
思路二:注意到An/A(n-1)大致是n,令 An=n!bn,代入,得
bn-b(n-1)=-(b(n-1)-b(n-2))/n,b1=0,b2=1/2.
所以,bn-b(n-1)=-(b(n-1)-b(n-2))/n=-(-(b(n-2)-b(n-3))/(n-1))/n=...=(-1)^(n-2)(b2-b1)/(n*(n-1)*...*3)=(-1)^n*1/n!,
所以 bn=1-1/1!+1/2!-1/3!+...+(-1)^n*1/n!,An=n!bn等于上式.
思路三:这个公式是错置排列的公式.所谓错置排列,有一个通俗的说法.n 个人,每人有一顶自己的帽子.An 是他们每个人都戴错帽子的戴法数目.显然 A1=0 (一个人不可能戴错),A2=1.对n>2的情况,第 n 个人的帽子必然戴到 某个第 i 人头上,i=1,2,...,n-1,这有两种情况 1)第i个人的帽子戴到第n个人头上,则其余 n-2 个人要互相戴错,共有 A(n-2)种戴法;
2)另外一个人的帽子戴到第n个人头上,此时共有 A(n-1)种戴法.总之,我们有 An=(n-1)(A(n-1)+A(n-2)),n>2.而我们可以用容斥原理算出错置排列的数目如上,所以必然有An等于上面的数.
一会儿回来提供三种证明思路
思路一:数学归纳法.这个没什么可说.
思路二:注意到An/A(n-1)大致是n,令 An=n!bn,代入,得
bn-b(n-1)=-(b(n-1)-b(n-2))/n,b1=0,b2=1/2.
所以,bn-b(n-1)=-(b(n-1)-b(n-2))/n=-(-(b(n-2)-b(n-3))/(n-1))/n=...=(-1)^(n-2)(b2-b1)/(n*(n-1)*...*3)=(-1)^n*1/n!,
所以 bn=1-1/1!+1/2!-1/3!+...+(-1)^n*1/n!,An=n!bn等于上式.
思路三:这个公式是错置排列的公式.所谓错置排列,有一个通俗的说法.n 个人,每人有一顶自己的帽子.An 是他们每个人都戴错帽子的戴法数目.显然 A1=0 (一个人不可能戴错),A2=1.对n>2的情况,第 n 个人的帽子必然戴到 某个第 i 人头上,i=1,2,...,n-1,这有两种情况 1)第i个人的帽子戴到第n个人头上,则其余 n-2 个人要互相戴错,共有 A(n-2)种戴法;
2)另外一个人的帽子戴到第n个人头上,此时共有 A(n-1)种戴法.总之,我们有 An=(n-1)(A(n-1)+A(n-2)),n>2.而我们可以用容斥原理算出错置排列的数目如上,所以必然有An等于上面的数.
看了 求n(n-1)(n-2).(...的网友还看了以下:
{(X-1)(X-2)(X-3)(X-4).(X-N)}/{(X+1)(X+2)(X+3)...( 2020-04-12 …
有个公式n^x的导数是x*n^(x-1)为什么x的定义域是Q?而对于无理数e则有e^x的导数等于e 2020-05-13 …
二项分布数学期望的推导∑kpk=∑kC(n,k)p^kq^(n-k)=np∑C((n-1),(k- 2020-05-15 …
数列a[n+1]=k+(2k+1)a[n]+(k(k+1)a[n](a[n+1]))^1/2 已知 2020-05-16 …
数列a[n+1]=k+(2k+1)a[n]+(k(k+1)a[n]a[n+1])^1/2 已知a1 2020-05-16 …
若关于x的方程|2x-3|+m=0无解,|3x-4|+n=0只有一个解,|4x-5|+k=0有两个 2020-05-16 …
e的x/k求导为什么等于x/k的导*e的x/k次方? 2020-05-17 …
f(x)=e^x-kx,设函数F(x)=f(x)+f(-x),求证F(1)F(2)……F(n)>[ 2020-05-21 …
假设第一个数为nk,第二个数为(nk+k)n,第三个数为[(nk+k)n+k]n.如此类推,即第n 2020-05-21 …
某个命题与自然数n有关,若n=k(k∈N*)时命题成立某个命题与自然数n有关,若n=k(k∈N*) 2020-06-06 …