早教吧 育儿知识 作业答案 考试题库 百科 知识分享

设方程F(x,y)=0确定隐函数y=f(x),且F(x,y)存在二阶连续偏导数,求其二阶导数答案应该是一串没有具体数字全是符号的式子最好要有每一步的详细过程答案是d`2y/dx`2=[2F''xyF'xF'y-F''xx(F'y)`2-F''yy(F'x)`2]/

题目详情
设方程F(x,y)=0确定隐函数y=f(x),且F(x,y)存在二阶连续偏导数,求其二阶导数
答案应该是一串没有具体数字全是符号的式子
最好要有每一步的详细过程
答案是
d`2y/dx`2=[2F''xyF'xF'y-F''xx(F'y)`2-F''yy(F'x)`2]/(F'y)`3
▼优质解答
答案和解析
F(x,y)=0
两边对x求导,得:
dF(x,y)/dx=d0/dx=0也即
F'x+F'y*dy/dx=0
解得
dy/dx=-F'x/F'y ①
上式两边再对x求导,得
d^2y/dx^2=d(dy/dx)/dx=-d(F'x/F'y)/dx
=-[d(F'x)/dx*F'y-F'x*d(F'y)/dx]/(F'y)^2 (注意F'x、F'y)都是x,y的二元函数)
=-[(F''xx*dx/dx+F''xy*dy/dx)F'y-F'x(F''yx*dx/dx+F''yy*dy/dx)]/(F'y)^2(将①式代入)
=[F'x(F''yx-F''yy*F'x/F'y)-F'y(F''xx-F''xy*F'x/F'y)]/(F'y)^2
=[F'x(F'yF''yx-F''yy*F'x)-F'y(F'yF''xx-F''xy*F'x)]/(F'y)^3 (注意F''yx=F''xy,合并)
=(2F'xF'yF''xy-F'y^2*F''xx-F'x^2*F''yy)/(F'y)^3
=你给的答案
不明白请追问.