早教吧作业答案频道 -->数学-->
为什么拉格朗日型余项的N前阶导数为零是因为代入X0后为零吗?如果这样,那垃拉格朗日型余项的第N+1阶导数是不是就不为零了!
题目详情
为什么拉格朗日型余项的N前阶导数为零
是因为代入X0后为零吗?如果这样,那垃拉格朗日型余项的第N+1阶导数是不是就不为零了!
是因为代入X0后为零吗?如果这样,那垃拉格朗日型余项的第N+1阶导数是不是就不为零了!
▼优质解答
答案和解析
对一个函数y=f(x),
在[x1,x2]上,有f(x1)=f(x2)=0
f(x)连续可导,而且导函数连续,则存在一点μ∈(x1,x2),使得f'(μ)=0
(用连续函数的最大值最小值定理以及可导函数的求导的定义式可以证明)
则考虑连续可导函数y=g(x),在[a,b]上,
构造函数:
G(x)=g(x)-(g(a)-g(b))/(a-b)·x+(b·g(a)-a·g(b))/(a-b)
则G(a)=G(b)=0
G(x)在[a,b]上连续可导,而且导函数连续,由罗尔定理
存在一点μ∈(a,b),G'(μ)=0
即:g'(μ)=(g(a)-g(b))/(a-b)
上式就是拉格朗日定理
由带佩亚诺余项的泰勒公式有:
对于n阶可导的函数f(x),
f(x)=f(x0)+f'(x0)(x-x0)/1!+f''(x0)(x-x0)^2/2!+…
+f(n-1)(x0)(x-x0)^(n-1)/(n-1)!+o[(x-x0)^(n-1)]
(o[(x-x0)^(n-1)]=f(n)(x0)(x-x0)^(n)/n!
对两边求n-1次导数有:f(n-1)(x)=f(n-1)(x0)+f(n)(x0)·(x-x0)
移项有:f(n)(x0)=[f(n-1)(x)-f(n-1)(x0)]/(x-x0)
由导数的定义式可得,(x-x0)→0时,两边相等,得证)
下证带有拉格朗日型余项的泰勒公式:
对于存在直到n+1阶连续导函数的函数f(x),
f(x)=f(x0)+f'(x0)(x-x0)/1!+f''(x0)(x-x0)^2/2!+…
+f(n)(x0)(x-x0)^n/n!+f(n+1)(μ)(x-x0)^(n+1)/(n+1)!
μ∈(x0,x)
两边求n次导数
f(n)(x)=f(n)(x0)+f(n+1)(μ)·(x-x0)
对比拉格朗日定理,由于存在n+1阶导数
f(n)(x)在[x0,x]上连续可导,而且导函数连续
由拉格朗日定理:
存在一点μ∈(x0,x),f'(n)(μ)=(f(n)(x)-f(n)(x0))/(x-x0)
即得:f(n)(x)=f(n)(x0)+f(n+1)(μ)·(x-x0)
证毕 口
你看下证明过程就会明白了!
在[x1,x2]上,有f(x1)=f(x2)=0
f(x)连续可导,而且导函数连续,则存在一点μ∈(x1,x2),使得f'(μ)=0
(用连续函数的最大值最小值定理以及可导函数的求导的定义式可以证明)
则考虑连续可导函数y=g(x),在[a,b]上,
构造函数:
G(x)=g(x)-(g(a)-g(b))/(a-b)·x+(b·g(a)-a·g(b))/(a-b)
则G(a)=G(b)=0
G(x)在[a,b]上连续可导,而且导函数连续,由罗尔定理
存在一点μ∈(a,b),G'(μ)=0
即:g'(μ)=(g(a)-g(b))/(a-b)
上式就是拉格朗日定理
由带佩亚诺余项的泰勒公式有:
对于n阶可导的函数f(x),
f(x)=f(x0)+f'(x0)(x-x0)/1!+f''(x0)(x-x0)^2/2!+…
+f(n-1)(x0)(x-x0)^(n-1)/(n-1)!+o[(x-x0)^(n-1)]
(o[(x-x0)^(n-1)]=f(n)(x0)(x-x0)^(n)/n!
对两边求n-1次导数有:f(n-1)(x)=f(n-1)(x0)+f(n)(x0)·(x-x0)
移项有:f(n)(x0)=[f(n-1)(x)-f(n-1)(x0)]/(x-x0)
由导数的定义式可得,(x-x0)→0时,两边相等,得证)
下证带有拉格朗日型余项的泰勒公式:
对于存在直到n+1阶连续导函数的函数f(x),
f(x)=f(x0)+f'(x0)(x-x0)/1!+f''(x0)(x-x0)^2/2!+…
+f(n)(x0)(x-x0)^n/n!+f(n+1)(μ)(x-x0)^(n+1)/(n+1)!
μ∈(x0,x)
两边求n次导数
f(n)(x)=f(n)(x0)+f(n+1)(μ)·(x-x0)
对比拉格朗日定理,由于存在n+1阶导数
f(n)(x)在[x0,x]上连续可导,而且导函数连续
由拉格朗日定理:
存在一点μ∈(x0,x),f'(n)(μ)=(f(n)(x)-f(n)(x0))/(x-x0)
即得:f(n)(x)=f(n)(x0)+f(n+1)(μ)·(x-x0)
证毕 口
你看下证明过程就会明白了!
看了 为什么拉格朗日型余项的N前阶...的网友还看了以下:
知识分子属于哪个阶级,为什么?知识分子属于哪个阶级?为什么新民主主义的时候是小资,而现在又是工人阶级 2020-03-30 …
1.英国、法国资产阶级革命完成其任务了吗?为什么?2.有人说:“因为没有解决农民的土地问题,英国资产 2020-03-31 …
tanxdy/dx-y=5∫1/(5+y)dy=∫1/tanxdxln(5+y)=-lnsinx+ 2020-04-09 …
卫星城出现在郊区城市化还是逆城市化阶段,为什么2.城市化的后期阶段,环境污染严重吗?为什么, 2020-05-23 …
三阶幻方中间必填5吗?三阶反幻方中间必填9吗?为什么? 2020-06-16 …
在英语里什么是音阶啊?在记单词中用音阶记可以吗?那什是音阶啊? 2020-06-17 …
一阶连续偏导数与一阶偏导数连续的问题!高手给指点下~O(∩∩)O谢谢一阶连续偏导数与一阶偏导数连续 2020-06-20 …
卡尔文循环是暗反应的哪一阶段?三羧酸循环是属于有氧呼吸吗?哪一阶段?还有糖哮解是指无氧呼吸吗?哪一 2020-06-29 …
西欧城市最早兴起不是在11世纪吗?B不应该是产生了城市阶级吗?资产阶级不是应资本主义萌芽后吗?C为 2020-07-21 …
行列式首项系数为1是什么意思矩阵A=120020-2-2-1求2阶行列式因子?其中存在一个二阶子矩 2020-07-30 …