早教吧作业答案频道 -->英语-->
急求贝塞尔函数的积分,积分上下限为(0,X),公式为besselj(0,x)^2*x^3,其实就是贝塞尔函数的平方不会算,编出结果总是有问题
题目详情
急求贝塞尔函数的积分,积分上下限为(0,X),公式为besselj(0,x)^2*x^3,
其实就是贝塞尔函数的平方不会算,编出结果总是有问题
其实就是贝塞尔函数的平方不会算,编出结果总是有问题
▼优质解答
答案和解析
贝塞尔函数分为几类,看看以下帮助,也许有所启发.
>> help Bessel
BESSEL Bessel functions of various kinds.
Bessel functions are solutions to Bessel's differential
equation of order NU:
2 2 2
x * y'' + x * y' + (x - nu ) * y = 0
There are several functions available to produce solutions to
Bessel's equations. These are:
BESSELJ(NU,Z) Bessel function of the first kind
BESSELY(NU,Z) Bessel function of the second kind
BESSELI(NU,Z) Modified Bessel function of the first kind
BESSELK(NU,Z) Modified Bessel function of the second kind
BESSELH(NU,K,Z) Hankel function
AIRY(K,Z) Airy function
See the help for each function for more details.
>> help BesselJ
BESSELJ Bessel function of the first kind.
J = BESSELJ(NU,Z) is the Bessel function of the first kind, J_nu(Z).
The order NU need not be an integer, but must be real.
The argument Z can be complex. The result is real where Z is positive.
If NU and Z are arrays of the same size, the result is also that size.
If either input is a scalar, it is expanded to the other input's size.
If one input is a row vector and the other is a column vector, the
result is a two-dimensional table of function values.
J = BESSELJ(NU,Z,0) is the same as BESSELJ(NU,Z).
J = BESSELJ(NU,Z,1) scales J_nu(z) by exp(-abs(imag(z)))
[J,IERR] = BESSELJ(NU,Z) also returns an array of error flags.
ierr = 1 Illegal arguments.
ierr = 2 Overflow. Return Inf.
ierr = 3 Some loss of accuracy in argument reduction.
ierr = 4 Complete loss of accuracy, z or nu too large.
ierr = 5 No convergence. Return NaN.
Examples:
besselj(3:9,(0:.2:10)') generates the entire table on page 398
of Abramowitz and Stegun, Handbook of Mathematical Functions.
MEMBRANE uses BESSELJ to generate the fractional order Bessel
functions used by the MathWorks Logo, the L-shaped membrane.
This M-file uses a MEX interface to a Fortran library by D. E. Amos.
Class support for inputs NU and Z:
float: double, single
See also bessely, besseli, besselk, besselh.
>> help Bessel
BESSEL Bessel functions of various kinds.
Bessel functions are solutions to Bessel's differential
equation of order NU:
2 2 2
x * y'' + x * y' + (x - nu ) * y = 0
There are several functions available to produce solutions to
Bessel's equations. These are:
BESSELJ(NU,Z) Bessel function of the first kind
BESSELY(NU,Z) Bessel function of the second kind
BESSELI(NU,Z) Modified Bessel function of the first kind
BESSELK(NU,Z) Modified Bessel function of the second kind
BESSELH(NU,K,Z) Hankel function
AIRY(K,Z) Airy function
See the help for each function for more details.
>> help BesselJ
BESSELJ Bessel function of the first kind.
J = BESSELJ(NU,Z) is the Bessel function of the first kind, J_nu(Z).
The order NU need not be an integer, but must be real.
The argument Z can be complex. The result is real where Z is positive.
If NU and Z are arrays of the same size, the result is also that size.
If either input is a scalar, it is expanded to the other input's size.
If one input is a row vector and the other is a column vector, the
result is a two-dimensional table of function values.
J = BESSELJ(NU,Z,0) is the same as BESSELJ(NU,Z).
J = BESSELJ(NU,Z,1) scales J_nu(z) by exp(-abs(imag(z)))
[J,IERR] = BESSELJ(NU,Z) also returns an array of error flags.
ierr = 1 Illegal arguments.
ierr = 2 Overflow. Return Inf.
ierr = 3 Some loss of accuracy in argument reduction.
ierr = 4 Complete loss of accuracy, z or nu too large.
ierr = 5 No convergence. Return NaN.
Examples:
besselj(3:9,(0:.2:10)') generates the entire table on page 398
of Abramowitz and Stegun, Handbook of Mathematical Functions.
MEMBRANE uses BESSELJ to generate the fractional order Bessel
functions used by the MathWorks Logo, the L-shaped membrane.
This M-file uses a MEX interface to a Fortran library by D. E. Amos.
Class support for inputs NU and Z:
float: double, single
See also bessely, besseli, besselk, besselh.
看了 急求贝塞尔函数的积分,积分上...的网友还看了以下:
设常数k∈R,讨论关于x的方程e^x=kx实数解的个数 2020-05-13 …
关于x的方程e^2x-2e^x=a+1有两个不相等的实数根,则a的范围是如题 2020-06-04 …
求教可分离变量的微分方程求方程Y'+3Y=0的通解DY/DX=-3YDY/Y=-3DXLN{Y}= 2020-06-05 …
1.∫xe∧(-2x)dx2.∫x³e∧x²dx∧表示次方例e∧(-2x)表示e的-2x次方用分部 2020-06-06 …
高中数学详细解释一下关于x的方程e^x-ax=0(e为自然对数的底数)有唯一解,则a的取值范围是. 2020-06-08 …
1.e为方阵A的特征值,则矩阵kA,A的平方,aA+bE,A的m次方,A的逆,A的伴随阵分别有特征 2020-06-18 …
关于指数函数的积分问题我查积分表得知,e的X次方的积分结果还是e的X次方然后+C,可是从这张图里面 2020-06-27 …
不定积分e^3x/(e^4x-1)还有不定积分e^x/根号(1+e^2x)请叙述清楚些好吗?还有这 2020-07-04 …
已知函数f(x)=2的x次方+1分之a×2的x次方+a-2(x∈R),a为何值时函数f(x)为奇函 2020-08-01 …
平面电磁波的特性是电磁波是横波,E和B的传播方向是.E和B的方向互相.E×B沿波矢k的方向.E和B的 2020-11-02 …