早教吧作业答案频道 -->英语-->
急求贝塞尔函数的积分,积分上下限为(0,X),公式为besselj(0,x)^2*x^3,其实就是贝塞尔函数的平方不会算,编出结果总是有问题
题目详情
急求贝塞尔函数的积分,积分上下限为(0,X),公式为besselj(0,x)^2*x^3,
其实就是贝塞尔函数的平方不会算,编出结果总是有问题
其实就是贝塞尔函数的平方不会算,编出结果总是有问题
▼优质解答
答案和解析
贝塞尔函数分为几类,看看以下帮助,也许有所启发.
>> help Bessel
BESSEL Bessel functions of various kinds.
Bessel functions are solutions to Bessel's differential
equation of order NU:
2 2 2
x * y'' + x * y' + (x - nu ) * y = 0
There are several functions available to produce solutions to
Bessel's equations. These are:
BESSELJ(NU,Z) Bessel function of the first kind
BESSELY(NU,Z) Bessel function of the second kind
BESSELI(NU,Z) Modified Bessel function of the first kind
BESSELK(NU,Z) Modified Bessel function of the second kind
BESSELH(NU,K,Z) Hankel function
AIRY(K,Z) Airy function
See the help for each function for more details.
>> help BesselJ
BESSELJ Bessel function of the first kind.
J = BESSELJ(NU,Z) is the Bessel function of the first kind, J_nu(Z).
The order NU need not be an integer, but must be real.
The argument Z can be complex. The result is real where Z is positive.
If NU and Z are arrays of the same size, the result is also that size.
If either input is a scalar, it is expanded to the other input's size.
If one input is a row vector and the other is a column vector, the
result is a two-dimensional table of function values.
J = BESSELJ(NU,Z,0) is the same as BESSELJ(NU,Z).
J = BESSELJ(NU,Z,1) scales J_nu(z) by exp(-abs(imag(z)))
[J,IERR] = BESSELJ(NU,Z) also returns an array of error flags.
ierr = 1 Illegal arguments.
ierr = 2 Overflow. Return Inf.
ierr = 3 Some loss of accuracy in argument reduction.
ierr = 4 Complete loss of accuracy, z or nu too large.
ierr = 5 No convergence. Return NaN.
Examples:
besselj(3:9,(0:.2:10)') generates the entire table on page 398
of Abramowitz and Stegun, Handbook of Mathematical Functions.
MEMBRANE uses BESSELJ to generate the fractional order Bessel
functions used by the MathWorks Logo, the L-shaped membrane.
This M-file uses a MEX interface to a Fortran library by D. E. Amos.
Class support for inputs NU and Z:
float: double, single
See also bessely, besseli, besselk, besselh.
>> help Bessel
BESSEL Bessel functions of various kinds.
Bessel functions are solutions to Bessel's differential
equation of order NU:
2 2 2
x * y'' + x * y' + (x - nu ) * y = 0
There are several functions available to produce solutions to
Bessel's equations. These are:
BESSELJ(NU,Z) Bessel function of the first kind
BESSELY(NU,Z) Bessel function of the second kind
BESSELI(NU,Z) Modified Bessel function of the first kind
BESSELK(NU,Z) Modified Bessel function of the second kind
BESSELH(NU,K,Z) Hankel function
AIRY(K,Z) Airy function
See the help for each function for more details.
>> help BesselJ
BESSELJ Bessel function of the first kind.
J = BESSELJ(NU,Z) is the Bessel function of the first kind, J_nu(Z).
The order NU need not be an integer, but must be real.
The argument Z can be complex. The result is real where Z is positive.
If NU and Z are arrays of the same size, the result is also that size.
If either input is a scalar, it is expanded to the other input's size.
If one input is a row vector and the other is a column vector, the
result is a two-dimensional table of function values.
J = BESSELJ(NU,Z,0) is the same as BESSELJ(NU,Z).
J = BESSELJ(NU,Z,1) scales J_nu(z) by exp(-abs(imag(z)))
[J,IERR] = BESSELJ(NU,Z) also returns an array of error flags.
ierr = 1 Illegal arguments.
ierr = 2 Overflow. Return Inf.
ierr = 3 Some loss of accuracy in argument reduction.
ierr = 4 Complete loss of accuracy, z or nu too large.
ierr = 5 No convergence. Return NaN.
Examples:
besselj(3:9,(0:.2:10)') generates the entire table on page 398
of Abramowitz and Stegun, Handbook of Mathematical Functions.
MEMBRANE uses BESSELJ to generate the fractional order Bessel
functions used by the MathWorks Logo, the L-shaped membrane.
This M-file uses a MEX interface to a Fortran library by D. E. Amos.
Class support for inputs NU and Z:
float: double, single
See also bessely, besseli, besselk, besselh.
看了 急求贝塞尔函数的积分,积分上...的网友还看了以下:
函数极限的问题极限的问题:请问,如果有两个函数f(x)和g(x),已知在负无穷大到正无穷大上恒有f 2020-05-17 …
大一微观经济学习题已知生产函数Q=f(L,K)=2KL-0.5²-0.5K²,假定厂商目前处于短期 2020-06-11 …
高三期末数学难题求解答.急就,帮帮忙啦啦1、填空设命题P:a方0成立,命题P且Q为假,P或Q为真, 2020-07-19 …
关于极限问题函数y=x+2(x大于等于0),当x趋于0时有没有极限?如果有,定理:函数f(x)当x 2020-07-20 …
给出以下五个命题:①若直线l∥直线a,a⊂β,则l∥β;②如果平面α⊥平面γ,平面β⊥平面γ,α∩ 2020-08-01 …
第一题∫(下限0,上限2)被积函数为x/√(1+x^2)第二题∫(下限0,上限a)被积函数为√(a 2020-08-02 …
关于函数极限的问题函数极限的定义是:f(x)在点Xo以A为极限的定义是:对于任意给定的正数ε(无论它 2020-12-03 …
初二的函数题,我没画图(本来有图),《天府数学》P116专题三训练的4题△AOB为正三角形,点B的坐 2020-12-04 …
数学专家请解下题第一题:i是虚数单位,i(1+i)等于第二题:函数y=sin(2分之T(念派)+2X 2020-12-08 …
如图,已知一次函数y=-x+2的图像与x轴\y轴分别交于点AB一直线l经过点C(1,0)将△ABC的 2021-01-10 …