早教吧作业答案频道 -->数学-->
求Sn=1+4+9+16+………………………………+n^2的和.
题目详情
求Sn=1+4+9+16+………………………………+n^2的和.
▼优质解答
答案和解析
平方和公式n(n+1)(2n+1)/6
即1^2+2^2+3^2+…+n^2=n(n+1)(2n+1)/6 (注:N^2=N的平方)
证明1+4+9+…+n^2=N(N+1)(2N+1)/6
证法一(归纳猜想法):
1、N=1时,1=1(1+1)(2×1+1)/6=1
2、N=2时,1+4=2(2+1)(2×2+1)/6=5
3、设N=x时,公式成立,即1+4+9+…+x2=x(x+1)(2x+1)/6
则当N=x+1时,
1+4+9+…+x2+(x+1)2=x(x+1)(2x+1)/6+(x+1)2
=(x+1)[2(x2)+x+6(x+1)]/6
=(x+1)[2(x2)+7x+6]/6
=(x+1)(2x+3)(x+2)/6
=(x+1)[(x+1)+1][2(x+1)+1]/6
也满足公式
4、综上所述,平方和公式1^2+2^2+3^2+…+n^2=n(n+1)(2n+1)/6成立,得证.
证法二(利用恒等式(n+1)^3=n^3+3n^2+3n+1):
(n+1)^3-n^3=3n^2+3n+1,
n^3-(n-1)^3=3(n-1)^2+3(n-1)+1
.
3^3-2^3=3*(2^2)+3*2+1
2^3-1^3=3*(1^2)+3*1+1.
把这n个等式两端分别相加,得:
(n+1)^3-1=3(1^2+2^2+3^2+.+n^2)+3(1+2+3+...+n)+n,
由于1+2+3+...+n=(n+1)n/2,
代人上式得:
n^3+3n^2+3n=3(1^2+2^2+3^2+.+n^2)+3(n+1)n/2+n
整理后得:
1^2+2^2+3^2+.+n^2=n(n+1)(2n+1)/6
即1^2+2^2+3^2+…+n^2=n(n+1)(2n+1)/6 (注:N^2=N的平方)
证明1+4+9+…+n^2=N(N+1)(2N+1)/6
证法一(归纳猜想法):
1、N=1时,1=1(1+1)(2×1+1)/6=1
2、N=2时,1+4=2(2+1)(2×2+1)/6=5
3、设N=x时,公式成立,即1+4+9+…+x2=x(x+1)(2x+1)/6
则当N=x+1时,
1+4+9+…+x2+(x+1)2=x(x+1)(2x+1)/6+(x+1)2
=(x+1)[2(x2)+x+6(x+1)]/6
=(x+1)[2(x2)+7x+6]/6
=(x+1)(2x+3)(x+2)/6
=(x+1)[(x+1)+1][2(x+1)+1]/6
也满足公式
4、综上所述,平方和公式1^2+2^2+3^2+…+n^2=n(n+1)(2n+1)/6成立,得证.
证法二(利用恒等式(n+1)^3=n^3+3n^2+3n+1):
(n+1)^3-n^3=3n^2+3n+1,
n^3-(n-1)^3=3(n-1)^2+3(n-1)+1
.
3^3-2^3=3*(2^2)+3*2+1
2^3-1^3=3*(1^2)+3*1+1.
把这n个等式两端分别相加,得:
(n+1)^3-1=3(1^2+2^2+3^2+.+n^2)+3(1+2+3+...+n)+n,
由于1+2+3+...+n=(n+1)n/2,
代人上式得:
n^3+3n^2+3n=3(1^2+2^2+3^2+.+n^2)+3(n+1)n/2+n
整理后得:
1^2+2^2+3^2+.+n^2=n(n+1)(2n+1)/6
看了 求Sn=1+4+9+16+…...的网友还看了以下:
n=2时s=4,n=3时s=8,n=4时s=12,s=5时n=16.按上述规律,写出s和n的关系式 2020-03-30 …
1到n的4次方之和等于多少 2020-03-31 …
初二下学期分解因式[数学]1.a(x-y)-b(y-x)+c(x-y)2.x(m+n)-y(n+m) 2020-03-31 …
因式分解,-4x^3+16x^2-26xmn(m-n)-m(n-m)5(x-y)^3+10(y-x 2020-04-08 …
几何题已知三角形ABC三边的长分别为《m的平方+16*n的平方》,《9*m的平方+4*n的平方》, 2020-04-27 …
问一个数学题阅读下列材料:如果一个数x的n(n是大于1的整数)次方等于a,这个数x就叫做a的n次方 2020-05-14 …
数学找规律题9-1=8 16-4=12 25-9=16 36-16=20 .这些等式反映自然数中的 2020-05-16 …
求证:存在无数多个自然数k,使得n4+k不是质数n4表示为n的4次方 2020-05-17 …
把下列各式分解因式(解答过程)30m的5次幂n的4次幂-16m³n的5次幂+24m²n²x²(x- 2020-05-20 …
1,分解因式(1)-3a³m-6a²m+12am(2)-3x(y-x)-(x-y)(3)-16+a 2020-06-03 …