早教吧作业答案频道 -->数学-->
在平面直角坐标系中,已知A、B是抛物线y=ax2(a>0)上两个不同的点,其中A在第二象限,B在第一象限,(1)如图1所示,当直线AB与x轴平行,∠AOB=90°,且AB=2时,求此抛物线的解析式和A、B
题目详情
在平面直角坐标系中,已知A、B是抛物线y=ax2(a>0)上两个不同的点,其中A在第二象限,B在第一象限,
(1)如图1所示,当直线AB与x轴平行,∠AOB=90°,且AB=2时,求此抛物线的解析式和A、B两点的横坐标的乘积.
(2)如图2所示,在(1)所求得的抛物线上,当直线AB与x轴不平行,∠AOB仍为90°时,A、B两点的横坐标的乘积是否为常数?如果是,请给予证明;如果不是,请说明理由.
(3)在(2)的条件下,若直线y=-2x-2分别交直线AB,y轴于点P、C,直线AB交y轴于点D,且∠BPC=∠OCP,求点P的坐标.
(1)如图1所示,当直线AB与x轴平行,∠AOB=90°,且AB=2时,求此抛物线的解析式和A、B两点的横坐标的乘积.
(2)如图2所示,在(1)所求得的抛物线上,当直线AB与x轴不平行,∠AOB仍为90°时,A、B两点的横坐标的乘积是否为常数?如果是,请给予证明;如果不是,请说明理由.
(3)在(2)的条件下,若直线y=-2x-2分别交直线AB,y轴于点P、C,直线AB交y轴于点D,且∠BPC=∠OCP,求点P的坐标.
▼优质解答
答案和解析
(1)如图1,∵AB与x轴平行,
根据抛物线的对称性有AE=BE=1,
∵∠AOB=90°,
∴OE=
AB=1,
∴A(-1,1)、B(1,1),
把x=1时,y=1代入y=ax2得:a=1,
∴抛物线的解析式y=x2,
A、B两点的横坐标的乘积为xA•xB=-1
(2)xA•xB=-1为常数,
如图2,过A作AM⊥x轴于M,BN⊥x轴于N,
∴∠AMO=∠BNO=90°,
∴∠MAO+∠AOM=∠AOM+∠BON=90°,
∴∠MAO=∠BON,
∴△AMO∽△BON,
∴
=
,
∴OM•ON=AM•BN,
设A(xA,yA),B(xB,yB),
∵A(xA,yA),B(xB,yB)在y=x2图象上,
∴,yA=xA2,yB=xB2,
∴-xA•xB=yA•yB=xA2•xB2,
∴xA•xB=-1为常数;
(3)设A(m,m2),B(n,n2),
如图3所示,过点A、B分别作x轴的垂线,垂足为E、F,则易证△AEO∽△OFB.
∴
=
,即
=
,整理得:mn(mn+1)=0,
∵mn≠0,∴mn+1=0,即mn=-1.
设直线AB的解析式为y=kx+b,联立
,得:x2-kx-b=0.
∵m,n是方程的两个根,∴mn=-b.
∴b=1.
∵直线AB与y轴交于点D,则OD=1.
易知C(0,-2),OC=2,∴CD=OC+OD=3.
∵∠BPC=∠OCP,∴PD=CD=3.
设P(a,-2a-2),过点P作PG⊥y轴于点G,则PG=-a,GD=OG-OD=-2a-3.
在Rt△PDG中,由勾股定理得:PG2+GD2=PD2,
即:(-a)2+(-2a-3)2=32,整理得:5a2+12a=0,
解得a=0(舍去)或a=-
,
当a=-
时,-2a-2=
,
∴P(-
,
).
根据抛物线的对称性有AE=BE=1,
∵∠AOB=90°,
∴OE=
1 |
2 |
∴A(-1,1)、B(1,1),
把x=1时,y=1代入y=ax2得:a=1,
∴抛物线的解析式y=x2,
A、B两点的横坐标的乘积为xA•xB=-1
(2)xA•xB=-1为常数,
如图2,过A作AM⊥x轴于M,BN⊥x轴于N,
∴∠AMO=∠BNO=90°,
∴∠MAO+∠AOM=∠AOM+∠BON=90°,
∴∠MAO=∠BON,
∴△AMO∽△BON,
∴
AM |
ON |
OM |
BN |
∴OM•ON=AM•BN,
设A(xA,yA),B(xB,yB),
∵A(xA,yA),B(xB,yB)在y=x2图象上,
∴,yA=xA2,yB=xB2,
∴-xA•xB=yA•yB=xA2•xB2,
∴xA•xB=-1为常数;
(3)设A(m,m2),B(n,n2),
如图3所示,过点A、B分别作x轴的垂线,垂足为E、F,则易证△AEO∽△OFB.
∴
AE |
OF |
OE |
BF |
m2 |
n |
-m |
n2 |
∵mn≠0,∴mn+1=0,即mn=-1.
设直线AB的解析式为y=kx+b,联立
|
∵m,n是方程的两个根,∴mn=-b.
∴b=1.
∵直线AB与y轴交于点D,则OD=1.
易知C(0,-2),OC=2,∴CD=OC+OD=3.
∵∠BPC=∠OCP,∴PD=CD=3.
设P(a,-2a-2),过点P作PG⊥y轴于点G,则PG=-a,GD=OG-OD=-2a-3.
在Rt△PDG中,由勾股定理得:PG2+GD2=PD2,
即:(-a)2+(-2a-3)2=32,整理得:5a2+12a=0,
解得a=0(舍去)或a=-
12 |
5 |
当a=-
12 |
5 |
14 |
5 |
∴P(-
12 |
5 |
14 |
5 |
看了 在平面直角坐标系中,已知A、...的网友还看了以下:
高一物理学中摩擦力使物块运动但它为什么会运动啊?一个物块A在物块B上,B物块在一个光滑水平面上,若 2020-05-17 …
相对静止的两物体要求是什么?)连接体问题怎么求他们是相对静止还是运动物块a在物块b上,与地面有相同 2020-05-17 …
下列关于会计信息质量要求的表述中,正确的有( )。A.在物价上涨期间,采用先进先出法计量发出存货 2020-05-19 …
在人类已知的化合物中,数量最多的是()A.过渡元素形成的化合物B.第ⅢA族元素形成的化合物C.第Ⅶ 2020-05-22 …
某一物体从高h处自由下落,与地面碰撞后又弹起高h,不计其他星球对地球的作用,以地球和物体作为一个统 2020-06-12 …
物体A从静止出发,以2m/s2的加速度向前运动.第3s末在同一地点物体B也从静止出发以3m/s2的 2020-06-16 …
某物体的运动的v-t图象如图所示,则下列说法正确的是()A.物体在第1s末运动方向发生改变B.物体 2020-06-16 …
马克思哲学理论学习在线做业,单选题33.阶级斗争的根源在于,对立阶级之间()A.在物质利益上的根本 2020-06-16 …
在采用鸡血为材料对DNA进行粗提取的实验中,若需进一步提取杂质较少的DNA,可以依据的原理是()A 2020-06-22 …
一物体在粗糙地面上以一定的初速度匀减速滑动.若已知物体在第1s内平均速度为8.0m/s,在第3s内 2020-07-01 …