早教吧 育儿知识 作业答案 考试题库 百科 知识分享

在平面直角坐标系中,已知A、B是抛物线y=ax2(a>0)上两个不同的点,其中A在第二象限,B在第一象限,(1)如图1所示,当直线AB与x轴平行,∠AOB=90°,且AB=2时,求此抛物线的解析式和A、B

题目详情
在平面直角坐标系中,已知A、B是抛物线y=ax2(a>0)上两个不同的点,其中A在第二象限,B在第一象限,
(1)如图1所示,当直线AB与x轴平行,∠AOB=90°,且AB=2时,求此抛物线的解析式和A、B两点的横坐标的乘积.
(2)如图2所示,在(1)所求得的抛物线上,当直线AB与x轴不平行,∠AOB仍为90°时,A、B两点的横坐标的乘积是否为常数?如果是,请给予证明;如果不是,请说明理由.
(3)在(2)的条件下,若直线y=-2x-2分别交直线AB,y轴于点P、C,直线AB交y轴于点D,且∠BPC=∠OCP,求点P的坐标.
作业搜
▼优质解答
答案和解析
作业搜 (1)如图1,∵AB与x轴平行,
根据抛物线的对称性有AE=BE=1,
∵∠AOB=90°,
∴OE=
1
2
AB=1,
∴A(-1,1)、B(1,1),
把x=1时,y=1代入y=ax2得:a=1,
∴抛物线的解析式y=x2
A、B两点的横坐标的乘积为xA•xB=-1
 
(2)xA•xB=-1为常数,
如图2,过A作AM⊥x轴于M,BN⊥x轴于N,作业搜
∴∠AMO=∠BNO=90°,
∴∠MAO+∠AOM=∠AOM+∠BON=90°,
∴∠MAO=∠BON,
∴△AMO∽△BON,
AM
ON
=
OM
BN

∴OM•ON=AM•BN,
设A(xA,yA),B(xB,yB),
∵A(xA,yA),B(xB,yB)在y=x2图象上,
∴,yA=xA2,yB=xB2,
∴-xA•xB=yA•yB=xA2xB2,
∴xA•xB=-1为常数;

(3)设A(m,m2),B(n,n2),
如图3所示,过点A、B分别作x轴的垂线,垂足为E、F,则易证△AEO∽△OFB.
AE
OF
=
OE
BF
,即
m2
n
=
-m
n2
,整理得:mn(mn+1)=0,
∵mn≠0,∴mn+1=0,即mn=-1.
设直线AB的解析式为y=kx+b,联立
y=kx+b
y=x2
,得:x2-kx-b=0.
∵m,n是方程的两个根,∴mn=-b.
∴b=1.作业搜
∵直线AB与y轴交于点D,则OD=1.
易知C(0,-2),OC=2,∴CD=OC+OD=3.
∵∠BPC=∠OCP,∴PD=CD=3.
设P(a,-2a-2),过点P作PG⊥y轴于点G,则PG=-a,GD=OG-OD=-2a-3.
在Rt△PDG中,由勾股定理得:PG2+GD2=PD2
即:(-a)2+(-2a-3)2=32,整理得:5a2+12a=0,
解得a=0(舍去)或a=-
12
5

当a=-
12
5
时,-2a-2=
14
5

∴P(-
12
5
14
5
).