早教吧作业答案频道 -->其他-->
设limx→0f(x)x=1,且f″(x)>0,证明f(x)≥x.
题目详情
设
=1,且f″(x)>0,证明f(x)≥x.
lim |
x→0 |
f(x) |
x |
▼优质解答
答案和解析
证明:由f″(x)>0知f(x)连续;
再根据
=1可知f(0)=0,f′(0)=1
故由麦克劳林中值定理f(x)=f(0)+f′(0)x+
x2 ,(0<ξ<x)
即f(x)=0+x+
x2=x+
x2
由于f″(x)>0(即f''(ξ)>0),x2≥0,所以
x2≥0;
两边加上x则得:x+
x2≥x,即f(x)≥x.
再根据
lim |
x→0 |
f(x) |
x |
故由麦克劳林中值定理f(x)=f(0)+f′(0)x+
f″(ξ) |
2! |
即f(x)=0+x+
f″(ξ) |
2 |
f″(ξ) |
2 |
由于f″(x)>0(即f''(ξ)>0),x2≥0,所以
f″(ξ) |
2 |
两边加上x则得:x+
f″(ξ) |
2 |
看了 设limx→0f(x)x=1...的网友还看了以下:
f(x)是定义在R上的函数,且对任意实数x,y都有f(x+y)=f(x)+f(y)-1成立,当f( 2020-06-02 …
定义在R上的函数y=f(x),满足f(x+2)=-1/f(x),则().A.f(x)不是周期函数B 2020-06-03 …
14.对任意x属于R,函数f(x)满足f(x+1)={√f(x)-[f(x)]^2}+1/2,设a 2020-06-24 …
已知函数f(x)对任意实数x,y∈R,总有f(x)+f(y)=f(x+y)已知函数f(x)对任意实 2020-07-16 …
已知函数f(x)对任意实数x,y∈R,总有f(x)+f(y)=f(x+y)已知函数f(x)对任意实 2020-07-16 …
已知函数f(x)对任意x、y属于R(实数集合),总有f(x)+f(y)=f(x+y)且当x大于零时 2020-07-27 …
函数奇偶性判断可以用代入法吗?设函数f(x)对于任意x,y属于R,都有f(x+y)=f(x)+f( 2020-08-01 …
设a是一复数,且是数域F上非零多项式g(x)的根,令W={f(x)∈F[x]|f(a)=0}证明在 2020-08-02 …
若一个函数关于x=a对称,则有f(x)=f(2a-x).如何得来若函数y=f(x)的图象关于直线x= 2020-11-08 …
已知函数f(x)对于任意x,y属于R,总有f(x+y)=f(x)+f(y)-1,X>0时.已知函数f 2020-12-22 …