早教吧 育儿知识 作业答案 考试题库 百科 知识分享

设F'(x)=f(x),f(x)为可导函数,且f(0)=1,又F(x)=xf(x)+x^2,求f'(x)和f(x)

题目详情
设F'(x)=f(x),f(x)为可导函数,且f(0)=1,又F(x)=xf(x)+x^2,求f'(x)和f(x)
▼优质解答
答案和解析
F(x)=xf(x)+x^2
F'(x)=f(x)+xf'(x)+2x
又F'(x)=f(x)
所以,f(x)=f(x)+xf'(x)+2x
则有:f'(x)=-2
则:f(x)=-2x+c
又f(0)=1,即:c=1
所以,f(x)=-2x+1,f'(x)=-2