早教吧 育儿知识 作业答案 考试题库 百科 知识分享

(2014•阜新)已知,在矩形ABCD中,连接对角线AC,将△ABC绕点B顺时针旋转90°得到△EFG,并将它沿直线AB向左平移,直线EG与BC交于点H,连接AH,CG.(1)如图①,当AB=BC,点F平移到线段BA上

题目详情
(2014•阜新)已知,在矩形ABCD中,连接对角线AC,将△ABC绕点B顺时针旋转90°得到△EFG,并将它沿直线AB向左平移,直线EG与BC交于点H,连接AH,CG.
(1)如图①,当AB=BC,点F平移到线段BA上时,线段AH,CG有怎样的数量关系和位置关系?直接写出你的猜想;
(2)如图②,当AB=BC,点F平移到线段BA的延长线上时,(1)中的结论是否成立,请说明理由;
(3)如图③,当AB=nBC(n≠1)时,对矩形ABCD进行如已知同样的变换操作,线段AH,CG有怎样的数量关系和位置关系?直接写出你的猜想.
▼优质解答
答案和解析
(1)AH=CG,AH⊥CG.
证明:延长AH与CG交于点T,如图①,
由旋转和平移的性质可得:EF=AB,FG=BC,∠EFG=∠ABC.
∵四边形ABCD是矩形,AB=BC,
∴EF=GF,∠EFG=∠ABC=90°.
∴∠CBG=90°,∠EGF=45°.
∴∠BHG=90°-45°=45°=∠EGF.
∴BH=BG.
在△ABH和△CBG中,
AB=BC
∠ABH=∠CBG
BH=BG

∴△ABH≌△CBG(SAS).
∴AH=CG,∠HAB=∠GCB.
∴∠HAB+∠AGC=∠GCB+∠AGC=90°.
∴∠ATC=90°.
∴AH⊥CG.

(2)(1)中的结论仍然成立.
证明:延长CG与AH交于点Q,如图②,
由旋转和平移的性质可得:EF=AB,FG=BC,∠EFG=∠ABC.
∵四边形ABCD是矩形,AB=BC,
∴EF=GF,∠EFG=∠ABC=90°.
∴∠ABH=90°,∠EGF=45°.
∴∠BGH=∠EGF=45°.
∴∠BHG=90°-45°=45°=∠BGH.
∴BH=BG.
在△ABH和△CBG中,
AB=BC
∠ABH=∠CBG
BH=BG

∴△ABH≌△CBG(SAS).
∴AH=CG,∠HAB=∠GCB.
∴∠GCB+∠CHA=∠HAB+∠CHA=90°.
∴∠CQA=90°.
∴CG⊥AH.

(3)AH=nCG,AH⊥CG.
理由如下:
延长AH与CG交于点N,如图③,
由旋转和平移的性质可得:EF=AB,FG=BC,∠EFG=∠ABC.
∵四边形ABCD是矩形,AB=nBC,
∴EF=nGF,∠EFG=∠ABC=90°.
∴∠EFG+∠ABC=180°.
∴BH∥EF.
∴△GBH∽△GFE.
BH
BG
=
FE
FG

FE
FG
=n=
AB
BC

BH
BG
=
AB
BC

∵∠ABH=∠CBG,
∴△ABH∽△CBG.
AH
CG
=
AB
CB
=n,∠HAB=∠GCB.
∴AH=nCG,∠HAB+∠AGC=∠GCB+∠AGC=90°.
∴∠ANC=90°.
∴AH⊥CG.