早教吧作业答案频道 -->其他-->
已知关于x的方程x^2-(2k+1)x+4(k-1/2)=0.(1)求证,无论k取何值,这个方程总有实数根(2)能否找到一个实数k,使方程的两实数根互为相反数?若能找到,求出k的值;若不能,说明理由(3)当等腰三角形ABC的
题目详情
已知关于x的方程x^2-(2k+1)x+4(k-1/2)=0.
(1)求证,无论k取何值,这个方程总有实数根
(2)能否找到一个实数k,使方程的两实数根互为相反数?若能找到,求出k的值;若不能,说明理由
(3)当等腰三角形ABC的边长a=4,另两边的长b,c恰好是这个方程的两根时,求三角形ABC的周长
(1)求证,无论k取何值,这个方程总有实数根
(2)能否找到一个实数k,使方程的两实数根互为相反数?若能找到,求出k的值;若不能,说明理由
(3)当等腰三角形ABC的边长a=4,另两边的长b,c恰好是这个方程的两根时,求三角形ABC的周长
▼优质解答
答案和解析
(1) Δ=[-(2k+1)]^2-4×4(k-1/2)
=(2k-3)^2
≥0
所以无论k取何值,这个方程总有实数根
(2)两实数x1,x2互为相反数
则x1+x2=0
韦达定理:x1+x2=-[-(2k+1)]=2k+1=0
k=-1/2
(3)等腰三角形ABC的边长a=4
若b=a=4或c=a=4
代入方程:16-4(2k+1)+4(k-1/2)=0
解得:k=5/2
方程为x^2-6x+8=0.
解得c=2或b=2
三角形ABC的周长=4+4+2=10
若b=c
方程x^2-(2k+1)x+4(k-1/2)=0有两相等的实数根b,c
Δ=[-(2k+1)]^2-4×4(k-1/2)=0
解得:k=3/2
方程为x^2-4x+4=0
解得b=c=2
三角形ABC的周长=4+2+2=8
=(2k-3)^2
≥0
所以无论k取何值,这个方程总有实数根
(2)两实数x1,x2互为相反数
则x1+x2=0
韦达定理:x1+x2=-[-(2k+1)]=2k+1=0
k=-1/2
(3)等腰三角形ABC的边长a=4
若b=a=4或c=a=4
代入方程:16-4(2k+1)+4(k-1/2)=0
解得:k=5/2
方程为x^2-6x+8=0.
解得c=2或b=2
三角形ABC的周长=4+4+2=10
若b=c
方程x^2-(2k+1)x+4(k-1/2)=0有两相等的实数根b,c
Δ=[-(2k+1)]^2-4×4(k-1/2)=0
解得:k=3/2
方程为x^2-4x+4=0
解得b=c=2
三角形ABC的周长=4+2+2=8
看了 已知关于x的方程x^2-(2...的网友还看了以下:
判断下列命题是全称命题还是特称命题,写出这些命题的否定,并说出这些否定的真假,不必证明.(1)末尾 2020-04-09 …
判断下列命题是全称命题还是特称命题,写出这些命题的否定,并说出这些否定的真假,不必证明.(1)末尾 2020-04-09 …
大多数生物需要吸入---------,呼出------.这说明生物能进行------- 2020-04-26 …
(1)-2,4,-8,16,-32,.中是否存在连续的三个数,使得三个数的和为768,若存在求出这 2020-06-12 …
如果让光线逆着反射光线的方向射向镜面,发现光线逆着原入射光线的方向射出这说明什么 2020-07-04 …
一道初二上的生物题、、1.仔细观察鱼缸里的活鱼,注意口和鳃盖后缘交替张和的动作.2.在鱼口前方滴一 2020-07-13 …
下列数阵是由偶数排列而成的:(1)在数阵中任意作一类似的框,如果这四个数的和为188,能否求出这四 2020-07-18 …
1789年6月,法国国民议会宣布:“……这个议会,而且只有这个议会,才能说明并提出全体国民的共同意愿 2020-12-09 …
判断下列命题是全称命题还是特称命题,写出这些命题的否定,并说出这些否定的真假,不必证明.(Ⅰ)存在实 2020-12-14 …
填空.玄奘西行为了求法,鉴真东渡为了传法,一个是输入,一个是输出,这说明了唐朝---------的社 2021-01-15 …