早教吧作业答案频道 -->数学-->
设x、y、z为实数,且(y-z)^2+(x-y)^2+(z-x)^2=(y+z-2x)^2+(x+z-2y)^2+(x+y-2z)^2,求[(yz+1)(zx+1)(xy+1)]/[(x^2+1)(y^2+1)(z^2+1)]的值.
题目详情
设x、y、z为实数,且(y-z)^2+(x-y)^2+(z-x)^2=(y+z-2x)^2+(x+z-2y)^2+(x+y-2z)^2,求[(yz+1)(zx+1)(xy+1)]/[(x^2+1)(y^2+1)(z^2+1)]的值.
▼优质解答
答案和解析
由于(y-z)²+(x-y)²+(z-x)²=(y+z-2x)²+(x+z-2y)²+(x+y-2z)²,则
(y+z-2x)²+(x+z-2y)²+(x+y-2z)²-(y-z)²-(x-y)²-(z-x)²=0 =》
(y+z-2x+y-z)(y+z-2x-y+z)+(x+z-2y+x-z)(x+z-2y-x+z)+(x+y-2z+y-x)(x+y-2z-y+x)=0 =》
(2y-2x)(2z-2x)+(2x-2y)(2z-2y)+(2y-2z)(2x-2z)=0 =》
4(y-x)(z-x)+4(x-y)(z-y)+4(y-z)(x-z)=0 =》
2(y-x)²+2(z-x)² +2(z-y)²=0 =》
所以y-x=0,z-x=0,z-y=0
则x=y=z
所以原式=(x²+1)³/(x²+1)³
=1
(y+z-2x)²+(x+z-2y)²+(x+y-2z)²-(y-z)²-(x-y)²-(z-x)²=0 =》
(y+z-2x+y-z)(y+z-2x-y+z)+(x+z-2y+x-z)(x+z-2y-x+z)+(x+y-2z+y-x)(x+y-2z-y+x)=0 =》
(2y-2x)(2z-2x)+(2x-2y)(2z-2y)+(2y-2z)(2x-2z)=0 =》
4(y-x)(z-x)+4(x-y)(z-y)+4(y-z)(x-z)=0 =》
2(y-x)²+2(z-x)² +2(z-y)²=0 =》
所以y-x=0,z-x=0,z-y=0
则x=y=z
所以原式=(x²+1)³/(x²+1)³
=1
看了 设x、y、z为实数,且(y-...的网友还看了以下:
问一道解方程组的题☆请写出球方程组的具体步骤用拉格朗日乘子法.令F(x,y,z,λ,μ)=x^2+ 2020-05-17 …
化简[x^3(y^2-z^2)+y^3(z^2-x^2)+z^3(x^2-y^2)]/[x^3(y 2020-06-03 …
设x、y、z为实数,且(y-z)^2+(x-y)^2+(z-x)^2=(y+z-2x)^2+(x+ 2020-06-12 …
设u及v是解析函数f(z)的实部及虚部,且u-v=(x+y)(x^2-4xy+y^2).z=x+i 2020-06-14 …
关于三元一次方程的题1、已知x/2=y/3=z/4.,且x+y-z=1/12,求x,y,z2、已知 2020-08-03 …
1..设x/a+y/b+z/c=1,a/x+b/y+c/z=0,求x*2/a*2+y*2/b*2+z 2020-10-30 …
(对称多项式)因式分解:x(x+z)^2+y(z+x)^2+z(x+y)^2-4xyz在加三题,因式 2020-10-31 …
xyz=1,x+y+z=2,x^2+y^2+z^2=3,求x,y,z我解:xy=1/z,x+y=2- 2020-10-31 …
x:y=3:2y:z=5:4X+y+z=16求结果和计算过程,是解方程x+y+Z=9x+y除以2=Z 2020-11-01 …
对称式的问题1.证明:3个变数多项式f(x,y,z)=x(y-z)^2+y(z-x)^2+z(x-y 2020-11-07 …