早教吧作业答案频道 -->数学-->
设整数x,y,z满足(x-y)(y-z)(z-x)=x+y+z,证明:27|(x+yz+).
题目详情
设整数x,y,z满足(x-y)(y-z)(z-x)=x+y+z,证明:27|(x+yz+).
▼优质解答
答案和解析
分类讨论:
(1)如果x,y,z被3除的余数互不相同,即余数分别是0,1,2,则它们的和能被3整除,
即等式(x-y)(y-z)(z-x)=x+y+z(*)的右边能被3整除,从而左边也能被3整除,
于是x-y,y-z,z-x中至少有一个能被3整除,这与x,y,z余数不同矛盾!此情况不可能.
(2)若x,y,z中恰有两个被3除余数相同,设x,y除以3余数都是r,z除以3余数为s,
由于此时(*)式左边能被3整除,进而右边也能,即2r+s能被3整除,由于r,s都取值于
0,1,2,验算易知此情况不可能.
(3)剩下就是x,y,z被3除的余数都相同,此时(*)式左边显然能被三个3的乘积27整除,
所以右边也能被27整除,所以,27|(x+yz+).
说明1.由于不知你对数论有多少了解,所以不敢使用数论术语,叙述太详细了(是我多虑!);
说明2.此问题离结束只有4天了,可能已经无人问津了,枉费我用心打字!
(1)如果x,y,z被3除的余数互不相同,即余数分别是0,1,2,则它们的和能被3整除,
即等式(x-y)(y-z)(z-x)=x+y+z(*)的右边能被3整除,从而左边也能被3整除,
于是x-y,y-z,z-x中至少有一个能被3整除,这与x,y,z余数不同矛盾!此情况不可能.
(2)若x,y,z中恰有两个被3除余数相同,设x,y除以3余数都是r,z除以3余数为s,
由于此时(*)式左边能被3整除,进而右边也能,即2r+s能被3整除,由于r,s都取值于
0,1,2,验算易知此情况不可能.
(3)剩下就是x,y,z被3除的余数都相同,此时(*)式左边显然能被三个3的乘积27整除,
所以右边也能被27整除,所以,27|(x+yz+).
说明1.由于不知你对数论有多少了解,所以不敢使用数论术语,叙述太详细了(是我多虑!);
说明2.此问题离结束只有4天了,可能已经无人问津了,枉费我用心打字!
看了 设整数x,y,z满足(x-y...的网友还看了以下:
设p为质数,整数x,y,z满足0<x<y<z<p,若x³,y³,z³除以p的余设p为质数,整数x, 2020-06-10 …
1设x、y、z属于R且(x-1)^2/16+(y+2)^2/5+(z-3)^2/4=1,则x+y+ 2020-06-12 …
已知有理数x,y,z满足x+[y]+{z}=-0.9,[x]+{y}+z=0.2,{x}+y+[z 2020-06-14 …
设a,b为不等于1的正数,并且实数x,y,z满足关系式1/x+1/y=1/z(1)当a^x=b^y 2020-06-18 …
设定数A,B,C使得不等式A(x-y)(x-z)+B(y-z)(y-x)+C(z-x)(z-y)≥ 2020-08-03 …
1.求满足x^2+y^2=2(x+y)+xy的所有正整数解2.若正数x,y,z同时满足xyz=1,x 2020-10-30 …
高中不等式题:非负实数x,y,z满足:x^2+y^2+z^2+x+2y+3z=13/4,则x+y+z 2020-10-31 …
已知三个数x,y,z满足xy/(x+y)=-2,yz/(y+z)=3/4,zx/(z+已知三个数x, 2020-11-01 …
设正数x,y,z,满足不等式:x^2+y^2-z^2/2xy+y^2+z^2-x^2/2yz+z^2 2020-11-01 …
已知整数x,y,z满足x≤y<z,且|x+y|+|y+z|+|z+x|=4|x-y|+|y-z|+| 2020-11-01 …