早教吧 育儿知识 作业答案 考试题库 百科 知识分享

设整数x,y,z满足(x-y)(y-z)(z-x)=x+y+z,证明:27|(x+yz+).

题目详情
设整数x,y,z满足(x-y)(y-z)(z-x)=x+y+z,证明:27|(x+yz+).
▼优质解答
答案和解析
分类讨论:
(1)如果x,y,z被3除的余数互不相同,即余数分别是0,1,2,则它们的和能被3整除,
即等式(x-y)(y-z)(z-x)=x+y+z(*)的右边能被3整除,从而左边也能被3整除,
于是x-y,y-z,z-x中至少有一个能被3整除,这与x,y,z余数不同矛盾!此情况不可能.
(2)若x,y,z中恰有两个被3除余数相同,设x,y除以3余数都是r,z除以3余数为s,
由于此时(*)式左边能被3整除,进而右边也能,即2r+s能被3整除,由于r,s都取值于
0,1,2,验算易知此情况不可能.
(3)剩下就是x,y,z被3除的余数都相同,此时(*)式左边显然能被三个3的乘积27整除,
所以右边也能被27整除,所以,27|(x+yz+).
说明1.由于不知你对数论有多少了解,所以不敢使用数论术语,叙述太详细了(是我多虑!);
说明2.此问题离结束只有4天了,可能已经无人问津了,枉费我用心打字!