早教吧 育儿知识 作业答案 考试题库 百科 知识分享

设f(x)连续,φ(x)=∫10f(xt)dt,且limx→0f(x)x=A(A为常数),求φ′(x)并讨论φ′(x)在x=0处的连续性.

题目详情
设f(x)连续,φ(x)=
1
0
f(xt)dt,且
lim
x→0
f(x)
x
=A(A为常数),求φ′(x)并讨论φ′(x)在x=0处的连续性.
▼优质解答
答案和解析

φ(x)
=∫
1
0
f(xt)dt
令u=xt
.
 
1
x
x
0
f(u)du,
φ′(x)=
f(x)
x
x
0
f(u)du
x2
(x≠0),
又由f(x)连续且
lim
x→0
f(x)
x
=A(A为常数),
得:f(0)=0,f′(0)=A,
再在φ(x)
=∫
1
0
f(xt)dt中,令x=0,得:φ(0)=0,
于是,
φ′(0)=
lim
x→0
φ(x)
x
lim
x→0
x
0
f(u)du
x2
=
lim
x→0
f(x)
2x
A
2

从而:
φ′(x)=
f(x)
x
x
0
f(u)du
x2
,x≠0
A
2
,x=0

lim
x→0
φ′(x)=
lim
x→0
[
f(x)
x
x
0
f(u)du
x2
]=
lim
x→0
f(x)
x
lim
x→0
x
0
f(u)du
x2
=A−
lim
x→0
f(x)
2x
=A−
1
2
A=
A
2
=φ′(0)
∴φ′(x)在x=0处连续