早教吧作业答案频道 -->其他-->
等腰Rt△ABC中,∠BAC=90°,点A、点B分别是x轴、y轴两个动点,直角边AC交x轴于点D,斜边BC交y轴于点E;(1)如图(1),若A(0,1),B(2,0),求C点的坐标;(2)如图(2),当等腰Rt△ABC
题目详情
等腰Rt△ABC中,∠BAC=90°,点A、点B分别是x轴、y轴两个动点,直角边AC交x轴于点D,斜边BC交y轴于点E;
(1)如图(1),若A(0,1),B(2,0),求C点的坐标;
(2)如图(2),当等腰Rt△ABC运动到使点D恰为AC中点时,连接DE,求证:∠ADB=∠CDE
(3)如图(3),在等腰Rt△ABC不断运动的过程中,若满足BD始终是∠ABC的平分线,试探究:线段OA、OD、BD三者之间是否存在某一固定的数量关系,并说明理由.
(1)如图(1),若A(0,1),B(2,0),求C点的坐标;
(2)如图(2),当等腰Rt△ABC运动到使点D恰为AC中点时,连接DE,求证:∠ADB=∠CDE
(3)如图(3),在等腰Rt△ABC不断运动的过程中,若满足BD始终是∠ABC的平分线,试探究:线段OA、OD、BD三者之间是否存在某一固定的数量关系,并说明理由.
▼优质解答
答案和解析
(1)过点C作CF⊥y轴于点F,
∴∠AFC=90°,
∴∠CAF+∠ACF=90°.
∵△ABC中是等腰直角三角形,∠BAC=90°,
∴AC=AB,∠CAF+∠BAO=90°,∠AFC=∠BAC,
∴∠ACF=∠BAO.
在△ACF和△ABO中,
,
∴△ACF≌△ABO(AAS)
∴CF=OA=1,AF=OB=2
∴OF=1
∴C(-1,-1);
(2)证明:过点C作CG⊥AC交y轴于点G,
∴∠ACG=∠BAC=90°,
∴∠AGC+∠GAC=90°.
∵∠CAG+∠BAO=90°,
∴∠AGC=∠BAO.
∵∠ADO+∠DAO=90°,∠DAO+∠BAO=90°,
∴∠ADO=∠BAO,
∴∠AGC=∠ADO.
在△ACG和△ABD中
∴△ACG≌△ABD(AAS),
∴CG=AD=CD.
∵∠ACB=∠ABC=45°,
∴∠DCE=∠GCE=45°,
在△DCE和△GCE中,
,
∴△DCE≌△GCE(SAS),
∴∠CDE=∠G,
∴∠ADB=∠CDE;
(3)在OB上截取OH=OD,连接AH
由对称性得AD=AH,∠ADH=∠AHD.
∵∠ADH=∠BAO.
∴∠BAO=∠AHD.
∵BD是∠ABC的平分线,
∴∠ABO=∠EBO,
∵∠AOB=∠EOB=90°.
在△AOB和△EOB中,
∴∠AFC=90°,
∴∠CAF+∠ACF=90°.
∵△ABC中是等腰直角三角形,∠BAC=90°,
∴AC=AB,∠CAF+∠BAO=90°,∠AFC=∠BAC,
∴∠ACF=∠BAO.
在△ACF和△ABO中,
|
∴△ACF≌△ABO(AAS)
∴CF=OA=1,AF=OB=2
∴OF=1
∴C(-1,-1);
(2)证明:过点C作CG⊥AC交y轴于点G,
∴∠ACG=∠BAC=90°,
∴∠AGC+∠GAC=90°.
∵∠CAG+∠BAO=90°,
∴∠AGC=∠BAO.
∵∠ADO+∠DAO=90°,∠DAO+∠BAO=90°,
∴∠ADO=∠BAO,
∴∠AGC=∠ADO.
在△ACG和△ABD中
|
∴△ACG≌△ABD(AAS),
∴CG=AD=CD.
∵∠ACB=∠ABC=45°,
∴∠DCE=∠GCE=45°,
在△DCE和△GCE中,
|
∴△DCE≌△GCE(SAS),
∴∠CDE=∠G,
∴∠ADB=∠CDE;
(3)在OB上截取OH=OD,连接AH
由对称性得AD=AH,∠ADH=∠AHD.
∵∠ADH=∠BAO.
∴∠BAO=∠AHD.
∵BD是∠ABC的平分线,
∴∠ABO=∠EBO,
∵∠AOB=∠EOB=90°.
在△AOB和△EOB中,
相关问答 |
看了 等腰Rt△ABC中,∠BAC...的网友还看了以下:
如图,二次函数y=ax^2+bx+c的图像交x轴于A(-2,0)B(1,0)交y轴于点C(0,-2 2020-05-16 …
如图,点A、B分别在x轴的负半轴和y轴的正半轴上,点C(2,-2),CA、CB分别交坐标轴于D、E 2020-06-12 …
如图是反比例函数y=9/x的图像,点c的坐标为(0,2),若点a是函数y=9/x图像上一点,点b是 2020-06-14 …
如图,y轴的负半轴平分∠AOB,P为y轴负半轴上的一动点,过点P作x轴的平行线分别交OA、OB于点 2020-06-29 …
如图2,在平面直角坐标系xOy中,已知OP平分∠yOx.点P(2,2),点A在x轴正半轴上,联结P 2020-06-29 …
如图,点P(2,2),点A、B分别在x轴正半轴和y轴负半轴上,A(5,0),∠APB=90°.(1 2020-07-10 …
2014年11月28日,探月工程三期再入返回飞行器服务舱抵达了地月拉格朗日-2点(图中的Z2点), 2020-07-28 …
写一篇英语作文70词左右内容.我院学生会定于11月12日周二下午2点在图书馆的第一报告厅听美国教授史 2020-12-31 …
数轴上点O表示原点,点A表示-2,点B表示1,点C表示2,点D表示-1(1)数轴可以看成是什么几何图 2021-02-04 …
1.已知数轴的原点为0.如图8,点A表示2.点B表示-2分之1.⑴数轴是什么图形?⑵数轴在原点左边的 2021-02-05 …