早教吧 育儿知识 作业答案 考试题库 百科 知识分享

设a,b是两个实数,A={(x,y)|x=n,y=na+b,n是整数},B={(x,y)|x=m,y=3m2+15,m是整数},C={(x,y)|x2+y2≤144},是平面XOY内的点集合,讨论是否存在a和b使得(1)A∩B≠φ(φ表示空集),(2

题目详情
设a,b是两个实数,
A={(x,y)|x=n,y=na+b,n是整数},
B={(x,y)|x=m,y=3m2+15,m是整数},
C={(x,y)|x2+y2≤144},
是平面XOY内的点集合,讨论是否存在a和b使得
(1)A∩B≠φ(φ表示空集),
(2)(a,b)∈C
同时成立.
▼优质解答
答案和解析
据题意,知
A={(x,y)|x=n,y=an+b,n∈Z}
B={(x,y)|x=m,y=3m^2+15,m∈Z}
假设存在实数a,b,使得A∩B≠Ø成立,则方程组
y=ax+b
y=3x2+15 有解,且x∈Z.
消去y,方程组化为 3x2-ax+15-b=0.①
∵方程①有解,
∴△=a2-12(15-b)≥0.
∴-a2≤12b-180.②
又由(2),得 a2+b2≤144.③
由②+③,得 b2≤12b-36.
∴(b-6)2≤0
∴b=6.
代入②,得 a2≥108.
代入③,得 a2≤108.
∴a2=108.a=±6√3
将a=±6
3
,b=6代入方程①,得
3x2±6
3
x+9=0.
解之得 x=±
3
,与x∈Z矛盾.
∴不存在实数a,b使(1)(2)同时成立.