早教吧作业答案频道 -->数学-->
如图4,已知抛物线y=ax2+bx+c(a>0)经过点A(2,0),B(6,0),交y轴于点C,且S△ABC=16.(1)求点C的坐标;(2)求抛物线的解析式及其对称轴;(3)若正方形DEFG内接于抛物线和x轴(边FG
题目详情
如图4,已知抛物线y=ax2+bx+c(a>0)经过点A(2,0),B(6,0),交y轴于点C,且S△ABC=16.
(1)求点C的坐标;
(2)求抛物线的解析式及其对称轴;
(3)若正方形DEFG内接于抛物线和x轴(边FG在x轴上,点D,E分别在抛物线上),求S正方形DEFG.
(1)求点C的坐标;
(2)求抛物线的解析式及其对称轴;
(3)若正方形DEFG内接于抛物线和x轴(边FG在x轴上,点D,E分别在抛物线上),求S正方形DEFG.
▼优质解答
答案和解析
(1)∵A(2,0),B(6,0),
∴AB=6-2=4.
∵S△ABC=16,
∴
×4•OC=16,
∴OC=8,
∴点C的坐标为(0,8);
(2)∵抛物线y=ax2+bx+c(a>0)经过点A(2,0),B(6,0),
∴可设抛物线的解析式为y=a(x-2)(x-6),
将C(0,8)代入,得8=12a,
解得a=
,
∴y=
(x-2)(x-6)=
x2-
x+8,
故抛物线的解析式为y=
x2-
x+8,其对称轴为直线x=4;
(3)设正方形DEFG的边长为m,则m>0,
∵正方形DEFG内接于抛物线和x轴(边FG在x轴上,点D,E分别在抛物线上),
∴D(4-
m,-m),E(4+
m,-m).
将E(4+
m,-m)代入y=
x2-
x+8,
得-m=
×(4+
m)2-
×(4+
m)+8,
整理得,m2+6m-16=0,
解得m1=2,m2=-8(不合题意舍去),
∴正方形DEFG的边长为2,
∴S正方形DEFG=22=4.
∴AB=6-2=4.
∵S△ABC=16,
∴
1 |
2 |
∴OC=8,
∴点C的坐标为(0,8);
(2)∵抛物线y=ax2+bx+c(a>0)经过点A(2,0),B(6,0),
∴可设抛物线的解析式为y=a(x-2)(x-6),
将C(0,8)代入,得8=12a,
解得a=
2 |
3 |
∴y=
2 |
3 |
2 |
3 |
16 |
3 |
故抛物线的解析式为y=
2 |
3 |
16 |
3 |
(3)设正方形DEFG的边长为m,则m>0,
∵正方形DEFG内接于抛物线和x轴(边FG在x轴上,点D,E分别在抛物线上),
∴D(4-
1 |
2 |
1 |
2 |
将E(4+
1 |
2 |
2 |
3 |
16 |
3 |
得-m=
2 |
3 |
1 |
2 |
16 |
3 |
1 |
2 |
整理得,m2+6m-16=0,
解得m1=2,m2=-8(不合题意舍去),
∴正方形DEFG的边长为2,
∴S正方形DEFG=22=4.
看了 如图4,已知抛物线y=ax2...的网友还看了以下:
如图,已知在平面直角坐标系中,点A的坐标为(0,2),点B的坐标为(2,0),经过原点的直线交线段A 2020-03-30 …
如图直线y=2x+6分别与x轴、y轴相交于A、C两点(求出后A坐标为(-3,0)C坐标为(0,6) 2020-06-13 …
如图,已知△ABC中,∠ACB=90°,以AB所在直线为x轴,过c点的直线为y轴建立平面直角坐标系 2020-06-14 …
在直角坐标系中,已知线段AB,点A的坐标为(1,-2),点B的坐标为(3,0),如图1所示.(1) 2020-06-14 …
如图,已知直线OA的解析式为y=x,直线AC垂直x轴于点C,点C的坐标为(2,0),直线OA关于直 2020-06-14 …
直线ob是一次函数y=2x的图像,点a的坐标(0,2)在直线ob上找点c,使得△aco为等直线OB 2020-06-22 …
如图,平面直角坐标系中.如图,在平面直角坐标系中,直线y=根号3/3x+3与x轴、y轴分别交于点A 2020-07-30 …
如图,直线y1=ax+b与双曲线y2=kx交于A、B两点,与x轴交于点C,点A的纵坐标为6,点B的 2020-08-01 …
如图1,点A为抛物线C1:y=x2﹣2的顶点,点B的坐标为(1,0)直线AB交抛物线C1于另一点C( 2020-10-31 …
如图,在平面直角坐标系中,点A、B的坐标分别为(0,3)、(1,0),连接AB将线段AB绕点B旋转9 2020-12-25 …