早教吧作业答案频道 -->数学-->
如图,△AOB中,OA=OB,∠AOB=90゜,AD平分∠OAB交OB于D,OE⊥AD交AB于E,垂足为F,(1)求证:OD=BE;(2)若DF=2,求AD-OE的值.
题目详情
如图,△AOB中,OA=OB,∠AOB=90゜,AD平分∠OAB交OB于D,OE⊥AD交AB于E,垂足为F,
(1)求证:OD=BE;
(2)若DF=
,求AD-OE的值.
(1)求证:OD=BE;
(2)若DF=
2 |
▼优质解答
答案和解析
证明:(1)连接DE,
∵OE⊥AD,
∴∠AFE=∠AFO=90°,
∵AD平分∠EAO,
∴∠EAF=∠OAF,
在△EAF和△OAF中,
,
∴△EAF≌△OAF(ASA),
∴AE=AO,∠AEO=∠AOE,
∵AD⊥OE,
∴EF=FO,
∴DE=DO,
∴∠DEO=∠DOE,
∵∠AEO=∠AOE,
∴∠AED=∠AOB=90°,
∵∠AOB=90°,AO=BO,
∴∠B=45°,
∴∠EDB=∠AEO-∠B=90°-45°=45°=∠B,
∴BE=DE,
∴OD=BE.
(2)在AD上截AM=OE,连接OM,
∵∠OAB=∠B=45°,AD平分∠OAB,
∴∠OAM=22.5°,
∵OD=DE,
∴∠DEO=∠DOE,
∵∠EDB=45°=∠DEO+∠DOE,
∴∠EOB=22.5°=∠OAM,
在△AMO和△OEB中,
,
∴△AMO≌△OEB(SAS),
∴MO=BE=OD,
∵OE⊥AD,
∴DF=MF,
∴AD-OE=DM=2DF=2
.
∵OE⊥AD,
∴∠AFE=∠AFO=90°,
∵AD平分∠EAO,
∴∠EAF=∠OAF,
在△EAF和△OAF中,
|
∴△EAF≌△OAF(ASA),
∴AE=AO,∠AEO=∠AOE,
∵AD⊥OE,
∴EF=FO,
∴DE=DO,
∴∠DEO=∠DOE,
∵∠AEO=∠AOE,
∴∠AED=∠AOB=90°,
∵∠AOB=90°,AO=BO,
∴∠B=45°,
∴∠EDB=∠AEO-∠B=90°-45°=45°=∠B,
∴BE=DE,
∴OD=BE.
(2)在AD上截AM=OE,连接OM,
∵∠OAB=∠B=45°,AD平分∠OAB,
∴∠OAM=22.5°,
∵OD=DE,
∴∠DEO=∠DOE,
∵∠EDB=45°=∠DEO+∠DOE,
∴∠EOB=22.5°=∠OAM,
在△AMO和△OEB中,
|
∴△AMO≌△OEB(SAS),
∴MO=BE=OD,
∵OE⊥AD,
∴DF=MF,
∴AD-OE=DM=2DF=2
2 |
看了 如图,△AOB中,OA=OB...的网友还看了以下:
如果梯形的对角互补,最大角是最小角的3倍,上底为a,下底为b(b>a),则两底间的距离为A:a+b 2020-04-26 …
(1)已知abc属于正实数,求证(a^2+a+1)(b^2+b+1)(c^2+c+1)>=27ab 2020-04-27 …
定义集合A*B={x|x∈A且x不属于B},若A={1,3,5,7},B={2,3,5},则: ( 2020-05-15 …
1、已知a,b,c互不相等求2a-b-c/(a-b)(b-c)+2b-c-a/(b-c)(b-a) 2020-05-16 …
1.[a/(ab-b²)-b/(a²-ab)]÷[1+(a²+b²)/2ab],其中a=-1+根号 2020-05-16 …
计算:(a/a^3+a^b+ab^2+b^3)(b/a^3-a^2b+ab^2-b^3)+(1/a 2020-07-21 …
二次函数y=ax2+bx+c(a≠0)的图象如图,下列四个结论:①4a+c<0;②m(am+b)+ 2020-07-30 …
利用如图所示几何图形的面积可以表示的公式是[]A.a2-b2=a(a-b)+b(a-b)B.(a- 2020-08-02 …
已知a^2+b^2=5,ab=4求代数式5ab^2(a-b)-3ab(b-a)^2+5a^2b(b- 2020-11-20 …
已知数轴上表示ab两点位置如图所示,试判断下列格式的符号:a+b;a-b;b-a;|a|-ba0b- 2020-12-24 …