早教吧作业答案频道 -->数学-->
(2014•仙桃)如图①,△ABC与△DEF是将△ACF沿过A点的某条直线剪开得到的(AB,DE是同一条剪切线).平移△DEF使顶点E与AC的中点重合,再绕点E旋转△DEF,使ED,EF分别与AB,BC交于M,N两点
题目详情
(2014•仙桃)如图①,△ABC与△DEF是将△ACF沿过A点的某条直线剪开得到的(AB,DE是同一条剪切线).平移△DEF使顶点E与AC的中点重合,再绕点E旋转△DEF,使ED,EF分别与AB,BC交于M,N两点.
(1)如图②,△ABC中,若AB=BC,且∠ABC=90°,则线段EM与EN有何数量关系?请直接写出结论;
(2)如图③,△ABC中,若AB=BC,那么(1)中的结论是否还成立?若成立,请给出证明:若不成立,请说明理由;
(3)如图④,△ABC中,若AB:BC=m:n,探索线段EM与EN的数量关系,并证明你的结论.
(1)如图②,△ABC中,若AB=BC,且∠ABC=90°,则线段EM与EN有何数量关系?请直接写出结论;
(2)如图③,△ABC中,若AB=BC,那么(1)中的结论是否还成立?若成立,请给出证明:若不成立,请说明理由;
(3)如图④,△ABC中,若AB:BC=m:n,探索线段EM与EN的数量关系,并证明你的结论.
▼优质解答
答案和解析
(1)EM=EN.
证明:过点E作EG⊥BC,G为垂足,作EH⊥AB,H为垂足,连接BE,如答图②所示.
则∠EHB=∠EGB=90°.
∴在四边形BHEG中,∠HBG+∠HEG=180°.
∵∠HBG+∠DEF=180°,
∴∠HEG=∠DEF.
∴∠HEM=∠GEN.
∵BA=BC,点E为AC中点,
∴BE平分∠ABC.
又∵EH⊥AB,EG⊥BC,
∴EH=EG.
在△HEM和△GEN中,
∵∠HEM=∠GEN,EH=EG,∠EHM=∠EGN,
∴△HEM≌△GEN.
∴EM=EN.
(2)EM=EN仍然成立.
证明:过点E作EG⊥BC,G为垂足,作EH⊥AB,H为垂足,连接BE,如答图③所示.
则∠EHB=∠EGB=90°.
∴在四边形BHEG中,∠HBG+∠HEG=180°.
∵∠HBG+∠DEF=180°,
∴∠HEG=∠DEF.
∴∠HEM=∠GEN.
∵BA=BC,点E为AC中点,
∴BE平分∠ABC.
又∵EH⊥AB,EG⊥BC,
∴EH=EG.
在△HEM和△GEN中,
∵∠HEM=∠GEN,EH=EG,∠EHM=∠EGN,
∴△HEM≌△GEN.
∴EM=EN.
(3)线段EM与EN满足关系:EM:EN=n:m.
证明:过点E作EG⊥BC,G为垂足,作EH⊥AB,H为垂足,连接BE,如答图④所示.
则∠EHB=∠EGB=90°.
∴在四边形BHEG中,∠HBG+∠HEG=180°.
∵∠HBG+∠DEF=180°,
∴∠HEG=∠DEF.
∴∠HEM=∠GEN.
∵∠HEM=∠GEN,∠EHM=∠EGN,
∴△HEM∽△GEN.
∴EM:EN=EH:EG.
∵点E为AC的中点,
∴S△AEB=S△CEB.
∴
AB•EH=
BC•EG.
∴EH:EG=BC:AB.
∴EM:EN=BC:AB.
∵AB:BC=m:n,
∴EM:EN=n:m.
证明:过点E作EG⊥BC,G为垂足,作EH⊥AB,H为垂足,连接BE,如答图②所示.
则∠EHB=∠EGB=90°.
∴在四边形BHEG中,∠HBG+∠HEG=180°.
∵∠HBG+∠DEF=180°,
∴∠HEG=∠DEF.
∴∠HEM=∠GEN.
∵BA=BC,点E为AC中点,
∴BE平分∠ABC.
又∵EH⊥AB,EG⊥BC,
∴EH=EG.
在△HEM和△GEN中,
∵∠HEM=∠GEN,EH=EG,∠EHM=∠EGN,
∴△HEM≌△GEN.
∴EM=EN.
(2)EM=EN仍然成立.
证明:过点E作EG⊥BC,G为垂足,作EH⊥AB,H为垂足,连接BE,如答图③所示.
则∠EHB=∠EGB=90°.
∴在四边形BHEG中,∠HBG+∠HEG=180°.
∵∠HBG+∠DEF=180°,
∴∠HEG=∠DEF.
∴∠HEM=∠GEN.
∵BA=BC,点E为AC中点,
∴BE平分∠ABC.
又∵EH⊥AB,EG⊥BC,
∴EH=EG.
在△HEM和△GEN中,
∵∠HEM=∠GEN,EH=EG,∠EHM=∠EGN,
∴△HEM≌△GEN.
∴EM=EN.
(3)线段EM与EN满足关系:EM:EN=n:m.
证明:过点E作EG⊥BC,G为垂足,作EH⊥AB,H为垂足,连接BE,如答图④所示.
则∠EHB=∠EGB=90°.
∴在四边形BHEG中,∠HBG+∠HEG=180°.
∵∠HBG+∠DEF=180°,
∴∠HEG=∠DEF.
∴∠HEM=∠GEN.
∵∠HEM=∠GEN,∠EHM=∠EGN,
∴△HEM∽△GEN.
∴EM:EN=EH:EG.
∵点E为AC的中点,
∴S△AEB=S△CEB.
∴
1 |
2 |
1 |
2 |
∴EH:EG=BC:AB.
∴EM:EN=BC:AB.
∵AB:BC=m:n,
∴EM:EN=n:m.
看了 (2014•仙桃)如图①,△...的网友还看了以下:
函数数学题.设f(x)=x^2-alnx g(x)=x-a根号x的图像分别交直线x+1于点A,B, 2020-05-15 …
已知直线L:x=-1,点f(1,0)以F为焦点,L为相应的准线的椭圆(中心不在坐标原点)短轴的一顶 2020-05-16 …
已知椭圆M:x2/a2+y2/3=1(a>0)的一个焦点为F(-1,0)已知椭圆M:x2/a2+y 2020-05-17 …
一到数学题:已知抛物线Y=1/2x2-x+1,点F(1,1)1、求该抛物线的顶点坐标2,取抛... 2020-06-14 …
已知曲线C:y^2=8(x+1),点F(1,0),P是曲线C上动点.1求线段PF中点M的轨迹方程2 2020-06-30 …
已知直线L:x=-1,点f(1,0)以F为焦点,L为相应的准线的椭圆(中心不在坐标原点)短轴的一顶 2020-07-31 …
已知f(x)=e^x,g(x)=lnx(1)求证g(x)<x<f(x)(2)设直线L与f(x),g( 2020-10-31 …
已知函数f(x)的两个零点分别为-1和2,已知函数f(x)=ax^2+bx+c的两个零点分别为-1和 2020-11-01 …
已知△ABC的面积为1,D,E分别是AB,AC边上的点,CD,BE交于F点,过点F作FM‖AB,FN 2020-11-03 …
已知△ABC的三个顶点的坐标分别是A(0,3)B(-1,0)C(1,0)直线l:y=-kx+2k分别 2021-01-11 …