早教吧 育儿知识 作业答案 考试题库 百科 知识分享

如图,在△ABC中,∠A=60°,BE⊥AC,垂足为E,CF⊥AB,垂足为F,点D是BC的中点,BE,CF交于点M.(1)如果AB=AC,求证:△DEF是等边三角形;(2)如果AB≠AC,试猜想△DEF是不是等边三角形?如

题目详情
如图,在△ABC中,∠A=60°,BE⊥AC,垂足为E,CF⊥AB,垂足为F,点D是BC的中点,BE,CF交于点M.
(1)如果AB=AC,求证:△DEF是等边三角形;
(2)如果AB≠AC,试猜想△DEF是不是等边三角形?如果△DEF是等边三角形,请加以证明;如果△DEF不是等边三角形,请说明理由;
(3)如果CM=4,FM=5,求BE的长度.
▼优质解答
答案和解析
(1)证明:∵∠A=60°,AB=AC,
∴△ABC是等边三角形,
∵BE⊥AC,垂足为E,CF⊥AB,垂足为F,
∴E、F分别是AC、AB边的中点,
又∵点D是BC的中点,
EF=
1
2
BC,DE=
1
2
AB,DF=
1
2
AC,
∴EF=ED=DF,
∴△DEF是等边三角形;

(2)△DEF是等边三角形.
理由如下:∵∠A=60°,BE⊥AC,CF⊥AB,
∴∠ABE=∠ACF=90°-60°=30°,
在△ABC中,∠BCF+∠CBE=180°-60°-30°×2=60°,
∵点D是BC的中点,BE⊥AC,CF⊥AB,
∴DE=DF=BD=CD,
∴∠BDF=2∠BCF,∠CDE=2∠CBE,
∴∠BDF+∠CDE=2(∠BCF+∠CBE)=2×60°=120°,
∴∠EDF=60°,
∴△DEF是等边三角形;

(3)∵∠A=60°,BE⊥AC,CF⊥AB,
∴∠ABE=∠ACF=90°-60°=30°,
∴BM=2FM=2×5=10,ME=
1
2
CM=
1
2
×4=2,
∴BE=BM+ME=10+2=12.