早教吧作业答案频道 -->数学-->
如图,在等腰Rt△ABC中,P是斜边BC的中点,以P为顶点的直角的两边分别与边AB,AC交于点E,F,连接EF.当∠EPF绕顶点P旋转时(点E不与A,B重合),△PEF也始终是等腰直角三角形,请你说明理
题目详情
如图,在等腰Rt△ABC中,P是斜边BC的中点,以P为顶点的直角的两边分别与边AB,AC交于点E,F,连接EF.当∠EPF绕顶点P旋转时(点E不与A,B重合),△PEF也始终是等腰直角三角形,请你说明理由.
▼优质解答
答案和解析
理由如下:
连接PA,
∵PA是等腰△ABC底边上的中线,
∴PA⊥PC(等腰三角形顶角的平分线、底边上的中线、底边上的高互相重合(三线合一)).
又AB⊥AC,
∴∠1=90°-∠PAC,∠C=90°-∠PAC,
∴∠1=∠C(等量代换).
同理可得PA⊥PC,PE⊥PF,
∴∠2=90°-∠APF,∠3=90°-∠APF,
∴∠2=∠3.
由PA是Rt△ABC斜边上的中线,得:
PA=
BC=PC(直角三角形斜边上的中线等于斜边的一半).
在△PAE和△PCF中,∠1=∠C,PA=PC,∠2=∠3,
∴△PAE≌△PCF(ASA).
∴PE=PF(全等三角形对应边相等),
则△PEF始终是等腰直角三角形.
连接PA,
∵PA是等腰△ABC底边上的中线,
∴PA⊥PC(等腰三角形顶角的平分线、底边上的中线、底边上的高互相重合(三线合一)).
又AB⊥AC,
∴∠1=90°-∠PAC,∠C=90°-∠PAC,
∴∠1=∠C(等量代换).
同理可得PA⊥PC,PE⊥PF,
∴∠2=90°-∠APF,∠3=90°-∠APF,
∴∠2=∠3.
由PA是Rt△ABC斜边上的中线,得:
PA=
1 |
2 |
在△PAE和△PCF中,∠1=∠C,PA=PC,∠2=∠3,
∴△PAE≌△PCF(ASA).
∴PE=PF(全等三角形对应边相等),
则△PEF始终是等腰直角三角形.
看了 如图,在等腰Rt△ABC中,...的网友还看了以下:
操作,将一把含45°角的三角尺放在边长为1的正方形ABCD上,并使它的直角顶点始终与点A重合其一条 2020-05-15 …
已知在平面直角坐标系中直线AB,CD分别与X轴,Y轴交于A,B,C,D,点A(-2,0)B(0,3 2020-05-15 …
如图,在矩形ABCD中,AB=5,AD=8,直角尺的直角顶点E在AD上滑动时如图,在矩形ABCD中 2020-05-17 …
(2013•泉州)如图1,在平面直角坐标系中,正方形OABC的顶点A(-6,0),过点E(-2,0 2020-06-11 …
已知椭圆M的离心率N,点F为椭圆的右焦点,点A、B分别为椭圆的左、右顶点,点M为椭圆的上顶点,且满 2020-06-30 …
(2009•大连)如图,抛物线F:y=ax2+bx+c的顶点为P,抛物线F与y轴交于点A,与直线O 2020-07-14 …
如图,已知抛物线与x轴交于点A(-2,0),B(4,0),与y轴交于点C(0,833).(1)求抛 2020-07-15 …
如图,抛物线F:y=ax^2+bx+c的顶点为P,抛物线与y轴交于点A,与直线OP交于点B,过点P 2020-07-29 …
数学关于对顶角的问题2条直线相交于点O有2对对顶角3条直线相交于点O有3对对顶角4条直线相交于点O 2020-08-01 …
两条直线相交,共有几对对顶角,几对邻补角,三条直线两两相交,共有几对对顶角,几对邻补角,四条直线相 2020-08-01 …