早教吧作业答案频道 -->数学-->
如图,AD是△ABC的边BC上的高,由下列条件中的某一个就能推出△ABC是等腰三角形的是.①∠BAD=∠ACD;②∠BAD=∠CAD;③AB+BD=AC+CD;④AB-BD=AC-CD.
题目详情
如图,AD是△ABC的边BC上的高,由下列条件中的某一个就能推出△ABC是等腰三角形的是 ___ .
![作业搜](https://www.zaojiaoba.cn/2018-07/29/1532852867-2958.jpg)
①∠BAD=∠ACD;②∠BAD=∠CAD;③AB+BD=AC+CD;④AB-BD=AC-CD.
![作业搜](https://www.zaojiaoba.cn/2018-07/29/1532852867-2958.jpg)
①∠BAD=∠ACD;②∠BAD=∠CAD;③AB+BD=AC+CD;④AB-BD=AC-CD.
▼优质解答
答案和解析
应添加的条件是②③④;
证明:②当∠BAD=∠CAD时,
∵AD是∠BAC的平分线,且AD是BC边上的高;
则△ABD≌△ACD,
∴△BAC是等腰三角形;
③延长DB至E,使BE=AB;延长DC至F,使CF=AC;连接AE、AF;
![作业搜](https://www.zaojiaoba.cn/2018-07/29/1532852867-7414.jpg)
∵AB+BD=CD+AC,
∴DE=DF,又AD⊥BC;
∴△AEF是等腰三角形;
∴∠E=∠F;
∵AB=BE,
∴∠ABC=2∠E;
同理,得∠ACB=2∠F;
∴∠ABC=∠ACB,即AB=AC,△ABC是等腰三角形;
④△ABC中,AD⊥BC,根据勾股定理,得:
AB2-BD2=AC2-CD2,
即(AB+BD)(AB-BD)=(AC+CD)(AC-CD);
∵AB-BD=AC-CD①,
∴AB+BD=AC+CD②;
∴①+②得:,
2AB=2AC;
∴AB=AC,
∴△ABC是等腰三角形
故答案为:②③④.
证明:②当∠BAD=∠CAD时,
∵AD是∠BAC的平分线,且AD是BC边上的高;
则△ABD≌△ACD,
∴△BAC是等腰三角形;
③延长DB至E,使BE=AB;延长DC至F,使CF=AC;连接AE、AF;
![作业搜](https://www.zaojiaoba.cn/2018-07/29/1532852867-7414.jpg)
∵AB+BD=CD+AC,
∴DE=DF,又AD⊥BC;
∴△AEF是等腰三角形;
∴∠E=∠F;
∵AB=BE,
∴∠ABC=2∠E;
同理,得∠ACB=2∠F;
∴∠ABC=∠ACB,即AB=AC,△ABC是等腰三角形;
④△ABC中,AD⊥BC,根据勾股定理,得:
AB2-BD2=AC2-CD2,
即(AB+BD)(AB-BD)=(AC+CD)(AC-CD);
∵AB-BD=AC-CD①,
∴AB+BD=AC+CD②;
∴①+②得:,
2AB=2AC;
∴AB=AC,
∴△ABC是等腰三角形
故答案为:②③④.
看了 如图,AD是△ABC的边BC...的网友还看了以下:
若a,b为有理数,a小于0,b大于0,且a的绝对值大于b的绝对值,那么a,b,-a,-b的大小关系 2020-04-05 …
已知A²-B²=6,A-B=3.求4AB等于多少?一 :(A-B)²=A²-B²-2AB已知 A² 2020-05-15 …
分解因式(a-b-c)(a+b-c)-(b-c-a)(b+c-a)正确答案是这个:(a+b-c)( 2020-05-17 …
已知f(X)=Lg1-X/1+X,a,b属于(-1,1)求证:f(a)+f(B)=F(A+B)/1 2020-05-22 …
已知M={2,a,b}N={2a,2b^2}且N=M.求ab∵N=M∴2a=a或2a=b若2a=a 2020-05-22 …
当a、b满足什么条件时,下列关系成立:(1)|a+b|=|a|+|b|;(2)|a+b|=||a| 2020-06-12 …
已知向量a与b反向,下列等式成立的是:A:|a|-|b|=|a-b|B:|a+b|=|a-b已知向 2020-07-30 …
2、已知a,b为非零向量,则下列命题中真命题的个数为A若|a|+|b|=|a+b|,则a与b方向相 2020-07-30 …
阅读:例:已知1/a+1/b=5/a+b,求b/a+a/b的值.因为1/a+1/b=5/a+b,所以 2020-11-15 …
已知:n=1a^2-b^2=(a-b)(a+b);a^3-b^3=(a-b)(a^2+ab+b^2) 2020-12-23 …