早教吧作业答案频道 -->数学-->
如图1,Rt△ABC中AB=AC,点D、E是线段AC上两动点,且AD=EC,AM垂直BD,垂足为M,AM的延长线交BC于点N,直线BD与直线NE相交于点F.试判断△DEF的形状,并加以证明.说明:(1)如果你经历反复探
题目详情
如图1,Rt△ABC中AB=AC,点D、E是线段AC上两动点,且AD=EC,AM垂直BD,垂足为M,AM的延长线交BC于点N,直线BD与直线NE相交于点F.试判断△DEF的形状,并加以证明.
说明:(1)如果你经历反复探索,没有找到解决问题的方法,请你把探索过程中的某种思路写出来(要求至少写3步);(2)在你经历说明(1)的过程之后,可以从下列①、②中选取一个补充或者更换已知条件,完成你的证明.
1、画出将△BAD沿BA方向平移BA长,然后顺时针旋转90°后图形;
2、点K在线段BD上,且四边形AKNC为等腰梯形(AC∥KN,如图2).
附加题:如图3,若点D、E是直线AC上两动点,其他条件不变,试判断△DEF的形状,并说明理由.
说明:(1)如果你经历反复探索,没有找到解决问题的方法,请你把探索过程中的某种思路写出来(要求至少写3步);(2)在你经历说明(1)的过程之后,可以从下列①、②中选取一个补充或者更换已知条件,完成你的证明.
1、画出将△BAD沿BA方向平移BA长,然后顺时针旋转90°后图形;
2、点K在线段BD上,且四边形AKNC为等腰梯形(AC∥KN,如图2).
附加题:如图3,若点D、E是直线AC上两动点,其他条件不变,试判断△DEF的形状,并说明理由.
▼优质解答
答案和解析
△DEF是等腰三角形
证明:如图,过点C作CP⊥AC,交AN延长线于点P
∵Rt△ABC中AB=AC
∴∠BAC=90°,∠ACB=45°
∴∠PCN=∠ACB,∠BAD=∠ACP
∵AM⊥BD
∴∠ABD+∠BAM=∠BAM+∠CAP=90°
∴∠ABD=∠CAP
∴△BAD≌△ACP
∴AD=CP,∠ADB=∠P
∵AD=CE
∴CE=CP
∵CN=CN
∴△CPN≌△CEN
∴∠P=∠CEN
∴∠CEN=∠ADB
∴∠FDE=∠FED
∴△DEF是等腰三角形.
附加题:△DEF为等腰三角形
证明:过点C作CP⊥AC,交AM的延长线于点P
∵Rt△ABC中AB=AC
∴∠BAC=90°,∠ACB=45°
∴∠PCN=∠ACB=∠ECN
∵AM⊥BD
∴∠ABD+∠BAM=∠BAM+∠CAP=90°
∴∠ABD=∠CAP
∴△BAD≌△ACP
∴AD=CP,∠D=∠P
∵AD=EC,CE=CP
又∵CN=CN
∴△CPN≌△CEN
∴∠P=∠E
∴∠D=∠E
∴△DEF为等腰三角形.
证明:如图,过点C作CP⊥AC,交AN延长线于点P
∵Rt△ABC中AB=AC
∴∠BAC=90°,∠ACB=45°
∴∠PCN=∠ACB,∠BAD=∠ACP
∵AM⊥BD
∴∠ABD+∠BAM=∠BAM+∠CAP=90°
∴∠ABD=∠CAP
∴△BAD≌△ACP
∴AD=CP,∠ADB=∠P
∵AD=CE
∴CE=CP
∵CN=CN
∴△CPN≌△CEN
∴∠P=∠CEN
∴∠CEN=∠ADB
∴∠FDE=∠FED
∴△DEF是等腰三角形.
附加题:△DEF为等腰三角形
证明:过点C作CP⊥AC,交AM的延长线于点P
∵Rt△ABC中AB=AC
∴∠BAC=90°,∠ACB=45°
∴∠PCN=∠ACB=∠ECN
∵AM⊥BD
∴∠ABD+∠BAM=∠BAM+∠CAP=90°
∴∠ABD=∠CAP
∴△BAD≌△ACP
∴AD=CP,∠D=∠P
∵AD=EC,CE=CP
又∵CN=CN
∴△CPN≌△CEN
∴∠P=∠E
∴∠D=∠E
∴△DEF为等腰三角形.
看了 如图1,Rt△ABC中AB=...的网友还看了以下:
关于轨迹的数学题已知点A(0,1),定直线L:y=-1,B为L上的一个动点.过B作直线m垂直于L, 2020-04-25 …
抛物线y=ax2+bx+c经过A(4,0)、B(1,0)、C(0,-2)三点.(1)求出抛物性的解 2020-04-26 …
已知(-1,y1), (-2,y2),(-4,y3) 是抛物线y=-2x²-8x+m上的点,则() 2020-05-17 …
在圆o中,直径ABCD定长且互相垂直E为半径OA上一动点,过E做EF垂直CE,EF...在圆o中, 2020-05-23 …
已知A,B,C是函数f(x)=2/x图像上的点,过点A、B、C分别作x轴的垂线AM、BN、CP,垂 2020-06-02 …
如图,等腰三角形ABC的直角顶点C在直线m上,AD垂直于m,BE垂直于m,垂足分别为D,E.1.试 2020-06-04 …
如图,直线m,n交于点B,点A是直线m上的点,在直线n上寻找一点c,使△ABC是等腰三角形,这样的 2020-06-15 …
到直线L的距离等于2的点有?到直线L的距离等于2的点有几个?已知点M是直线l外的一点,作MN垂直l 2020-06-16 …
如图所示,三角形ABC中,角BAC等于90度,AB等于AC直线M经过点A分别过点B.C.作MN的垂 2020-06-27 …
设F是椭圆x24+y2=1的右焦点,椭圆上的点与点F的最大距离为M,最小距离是m,则椭圆上与点F的 2020-07-15 …