早教吧 育儿知识 作业答案 考试题库 百科 知识分享

(2014•宁德质检)如图1,在Rt△ABC中,∠BAC=90°,AB=AC,在BC的同侧作任意Rt△DBC,∠BDC=90°.(1)若CD=2BD,M是CD中点(如图1),求证:△ADB≌△AMC;下面是小明的证明过程,请你将它补充完

题目详情
(2014•宁德质检)如图1,在Rt△ABC中,∠BAC=90°,AB=AC,在BC的同侧作任意Rt△DBC,∠BDC=90°.
(1)若CD=2BD,M是CD中点(如图1),求证:△ADB≌△AMC;
下面是小明的证明过程,请你将它补充完整:
证明:设AB与CD相交于点O,
∵∠BDC=90°,∠BAC=90°,
∴∠DOB+∠DBO=∠AOC+∠ACO=90°.
∵∠DOB=∠AOC,
∴∠DBO=∠①______.
∵M是DC的中点,
∴CM=
1
2
CD=②______.
又∵AB=AC,
∴△ADB≌△AMC.
(2)若CD<BD(如图2),在BD上是否存在一点N,使得△ADN是以DN为斜边的等腰直角三角形?若存在,请在图2中确定点N的位置,并加以证明;若不存在,请说明理由;
(3)当CD≠BD时,线段AD,BD与CD满足怎样的数量关系?请直接写出.
▼优质解答
答案和解析
(1)由题意,得
①根据直角三角形的性质就可以得出∴∠DBO=∠MCA(或∠ACO);
②由等式的性质就可以得出CM=BD; 
故答案为:∠MCA,BD;
(2)存在
理由:如图3,在BD上截取BN=CD,
∵∠BAC=∠BDC=90°,∠AOB=∠COD,
∴∠ABN=∠ACD.
在△ACD和△ABN中,
AC=AB
∠ACD=∠ABN
CD=BN

∴△ACD≌△ABN(SAS),
∴AN=AD,∠DAC=∠NAB.
∵∠NAB+∠NAC=90°,
∴∠DAC+∠NAC=90°,
即∠NAD=90°,
∴△NAD为等腰直角三角形;
(3)①当CD<BD时,
2
AD=BD-CD.
理由:如图3,在BD上截取BN=CD,
∵∠BAC=∠BDC=90°,∠AOB=∠COD,
∴∠ABN=∠ACD.
在△ACD和△ABN中,
AC=AB
∠ACD=∠ABN
CD=BN

∴△ACD≌△ABN(SAS),
∴AN=AD,∠DAC=∠NAB.
∵∠NAB+∠NAC=90°,
∴∠DAC+∠NAC=90°,
即∠NAD=90°,
∴△NAD为等腰直角三角形;
∴ND=
2
AD.
∵ND=BD-BN,
∴ND=BD-CD,
2
AD=BD-CD
②当CD>BD时,
首页    语文    数学    英语    物理    化学    历史    政治    生物    其他     
Copyright © 2019 zaojiaoba.cn All Rights Reserved 版权所有 作业搜 
本站资料来自网友投稿及互联网,如有侵犯你的权益,请联系我们:105754049@qq.com
湘ICP备12012010号