早教吧作业答案频道 -->数学-->
如图,已知AB∥CD,点M,N分别是AB,CD上两点,点G在AB,CD之间.(1)求证:∠AMG+∠CNG=∠MGN;(2)如图②,点E是AB上方一点,MF平分∠AME,若点G恰好在MF的反向延长线上,且NE平分∠CNG,2∠E
题目详情
如图,已知AB∥CD,点M,N分别是AB,CD上两点,点G在AB,CD之间.
(1)求证:∠AMG+∠CNG=∠MGN;
(2)如图②,点E是AB上方一点,MF平分∠AME,若点G恰好在MF的反向延长线上,且NE平分∠CNG,2∠E+∠G=90°,求∠AME的度数;
(3)如图③,若点P是(2)中的EM上一动点,PQ平分∠MPQ.NH平分∠PNC,交AB于点H,PJ∥NH,直接写出∠JPQ的度数.
(1)求证:∠AMG+∠CNG=∠MGN;
(2)如图②,点E是AB上方一点,MF平分∠AME,若点G恰好在MF的反向延长线上,且NE平分∠CNG,2∠E+∠G=90°,求∠AME的度数;
(3)如图③,若点P是(2)中的EM上一动点,PQ平分∠MPQ.NH平分∠PNC,交AB于点H,PJ∥NH,直接写出∠JPQ的度数.
▼优质解答
答案和解析
(1)证明:如图①,过点G作GE∥AB,
∵AB∥CD,
∴AB∥CD∥GE,
∴∠AMG=∠MGE,∠CNG=∠NGE,
∴∠AMG+∠CNG=∠MGN;
(2)如图②,设FG与NE交点为H点,AB与NE的交点I,
在△HNG中,
∵∠G+∠HNG+∠NHG=180°
∴∠HNG=∠AIE=∠IHM+∠IMH=(∠E+∠EMF)+∠IMH=∠E+(∠EMF+∠IMH )=∠E+∠AME
∠NHG=∠IHM=∠E+∠EMF=∠E+
∠AME
∴∠G+∠HNG+∠NHG=∠G+(∠E+∠AME)+(∠E+
∠AME)=180° (∠G+2∠E)+
∠AME=180°,即90°+
∠AME=180°,
∴∠AME=60°;
(3)∵PQ平分∠MPN,NH平分∠PNC,
∴∠JPQ=∠JPN-
∠MPN
=
(∠ENC-
∠MPN)
=
(∠AOE-
∠MPN)
=
∠AME
=30°.
∵AB∥CD,
∴AB∥CD∥GE,
∴∠AMG=∠MGE,∠CNG=∠NGE,
∴∠AMG+∠CNG=∠MGN;
(2)如图②,设FG与NE交点为H点,AB与NE的交点I,
在△HNG中,
∵∠G+∠HNG+∠NHG=180°
∴∠HNG=∠AIE=∠IHM+∠IMH=(∠E+∠EMF)+∠IMH=∠E+(∠EMF+∠IMH )=∠E+∠AME
∠NHG=∠IHM=∠E+∠EMF=∠E+
1 |
2 |
∴∠G+∠HNG+∠NHG=∠G+(∠E+∠AME)+(∠E+
1 |
2 |
3 |
2 |
3 |
2 |
∴∠AME=60°;
(3)∵PQ平分∠MPN,NH平分∠PNC,
∴∠JPQ=∠JPN-
1 |
2 |
=
1 |
2 |
1 |
2 |
=
1 |
2 |
1 |
2 |
=
1 |
2 |
=30°.
看了 如图,已知AB∥CD,点M,...的网友还看了以下:
要测量A、B两地的高度差,但不能直接测量,找了D E F G H 5个中间点,测量结果如下表(单位 2020-05-13 …
mathematica解一元六次方程Solve[{b==f+a,c+d==b,f+g==d,40- 2020-05-16 …
某二叉树结点的前序序列为F,C,A,D,B,E,G,H,P,对称序序列为A,C,B,D,F,E, H 2020-05-23 …
某二叉树结点的前序序列为F,C,A,D,B,E,G,H,P,对称序序列为A,C,B,D,F,E,H, 2020-05-24 …
高数:若f(x),g(x)在[a,b]区间连续,F(x)=[a,x定积分区间]g(x)d(x)*[ 2020-06-07 …
体积相同但材料不同的甲、乙、丙三个小球,放在同一液体中静止后的位置,如图所示,三个小球所受重力间的 2020-06-16 …
修青藏铁路要测A.B两地的高度差,因地形情况,不易测出,我们在AB两点间找到合适的四个点,D.E. 2020-07-06 …
修青藏铁路要测A.B两地的高度差,因地形情况,不易测出,我们在AB两点间找到合适的四个点,D.E. 2020-07-06 …
如图示的两电路中,当a、b两端与e、f两端分别加上220V的交流电压时,测得c、d间与g、h间的电 2020-07-10 …
求解多元一次不等式的编程47a-b-c-d-e-f-g>047b-a-c-d-e-f-g>023c- 2020-12-14 …