早教吧作业答案频道 -->其他-->
已知四边形ABCD的面积为32,AB、CD、AC的长都是整数,且它们的和为16.(1)这样的四边形有几个?(2)求这样的四边形边长的平方和的最小值.
题目详情
已知四边形ABCD的面积为32,AB、CD、AC的长都是整数,且它们的和为16.
(1)这样的四边形有几个?
(2)求这样的四边形边长的平方和的最小值.
(1)这样的四边形有几个?
(2)求这样的四边形边长的平方和的最小值.
▼优质解答
答案和解析
(1)如图,记AB=a,CD=b,AC=l,并设△ABC的边BA上的高为h1,△ADC的边DC上的高为h2,
则S四边形ABCD=S△ABC+S△ADC=
(h1a+h2b)≤
l(a+b),
当且仅当h1=h2=l时等号成立,即在四边形ABCD中,当AC⊥AB,AC⊥CD时,等号成立,
由已知得64≤l(a+b),又∵a+b=16-l,
得64≤l(16-l)=64-(l-8)2≤64,
于是l=8,a+b=8,且这时AC⊥AB,AC⊥CD,
因此这样的四边形由如下4个:a=1,b=7,l=8;a=2,b=6,l=8;a=3,b=5,l=8;a=b=4,l=8;
(2)由于AB=a,CD=8-a,则BC2=82+a2,AD2=82+(8-a)2,
故这样的四边形的边长的平方和为:
2a2+2(8-a)2+128=4(a-4)2+192,
当a=b=4时,平方和最小,且为192.
故答案为:4,192.
则S四边形ABCD=S△ABC+S△ADC=
1 |
2 |
1 |
2 |
当且仅当h1=h2=l时等号成立,即在四边形ABCD中,当AC⊥AB,AC⊥CD时,等号成立,
由已知得64≤l(a+b),又∵a+b=16-l,
得64≤l(16-l)=64-(l-8)2≤64,
于是l=8,a+b=8,且这时AC⊥AB,AC⊥CD,
因此这样的四边形由如下4个:a=1,b=7,l=8;a=2,b=6,l=8;a=3,b=5,l=8;a=b=4,l=8;
(2)由于AB=a,CD=8-a,则BC2=82+a2,AD2=82+(8-a)2,
故这样的四边形的边长的平方和为:
2a2+2(8-a)2+128=4(a-4)2+192,
当a=b=4时,平方和最小,且为192.
故答案为:4,192.
看了 已知四边形ABCD的面积为3...的网友还看了以下:
一个多边形物体截去一个角后(不改变其他角的大小),形成另一个多边形的内角和是2520度,则原多边形 2020-05-13 …
一个多边形的每一个外角都等于30°,这个多边形的内角和为多少?能过用两种正多边形组合铺满地面的是( 2020-05-15 …
如图,四边形ABCD是平行四边形,点E、F分别为AD、BC边上的点,且AE=CF求证:四边形BED 2020-05-16 …
已知a*b为常数,求a+b什么时候最小,这是个什么定律,公式如何推导出来的当a=b时,a+b最小, 2020-07-21 …
用一根长为a米的线围成一个等边三角形,测知这个等边三角形的面积为b平方米.现在这个等边三角形内任取 2020-07-21 …
1.已知正方形的边长为20厘米,求这个正方形的半径长和边心距.2设正三角形的边长为a.求1:这个正 2020-07-26 …
具备下列条件的两个三角形,可以证明他们全等的是()A.一边和这边上的高对应相等B.两边和其中一条边 2020-08-01 …
如果明天下雨,我就去踢球的矛盾命题是什么啊?如果明天下雨,我就去踢球的矛盾命题是:A.如果明天不下 2020-08-01 …
设集合A={X属于Z|-2010≤X≤0},集合B={X属于Z|X≤1005},这A和B的并集中的 2020-08-02 …
1、(1)若一个多边形的内角和等于1080°,则这个多边形的边数是多少?(2)正多边形的每一个内角 2020-08-02 …