早教吧作业答案频道 -->数学-->
如图,已知平行四边形ABCD中,E为AD中点,点G在BC边上,且∠1=∠2.(1)若AD=4,求BG的长;(2)若F为CD延长线上一点,连接BF,且满足∠3=∠2.求证:CD=BF+DF.
题目详情
如图,已知平行四边形ABCD中,E为AD中点,点G在BC边上,且∠1=∠2.
(1)若AD=4,求BG的长;
(2)若F为CD延长线上一点,连接BF,且满足∠3=∠2.求证:CD=BF+DF.
(1)若AD=4,求BG的长;
(2)若F为CD延长线上一点,连接BF,且满足∠3=∠2.求证:CD=BF+DF.
▼优质解答
答案和解析
(1) ∵四边形ABCD为平行四边形,
∴AD=BC,AB=CD,∠A=∠C,
在△AEB和△CDG中,
,
∴△AEB≌△CDG,
∴AE=CG,
∵G为BC中点,
∴CG=
BC,
∴AE=
BC,
∵AD=BC,
∴AE=
AD,
∴E是AD的中点,
∴DE=BG=
AD=2,
(2)如图,延长DF,BE,相交于点H,
∵E为AD的中点,G为BC的中点,
∴DE=
AD,BG=
BC,
∵四边形ABCD为平行四边形,
∴AD=BC,AD∥BC,
∴DE=BG,DE∥BG,
∴四边形EBGD为平行四边形,
∴BE∥DG,
∴∠H=∠2,
∵∠3=∠2,
∴∠H=∠3,
∴BF=HF,
∵∠1=∠2,
∴∠H=∠1,
∵E为AD的中点,
∴AE=DE,
在△AEB和△DEH中,
,
∴△AEB≌△DEH,
∴AB=DH,
∵AB=CD,
∴CD=DH,
∵DH=HF+FD,HF=BF,
∴DH=BF+FD,
∴CD=BF+FD.
∴AD=BC,AB=CD,∠A=∠C,
在△AEB和△CDG中,
|
∴△AEB≌△CDG,
∴AE=CG,
∵G为BC中点,
∴CG=
1 |
2 |
∴AE=
1 |
2 |
∵AD=BC,
∴AE=
1 |
2 |
∴E是AD的中点,
∴DE=BG=
1 |
2 |
(2)如图,延长DF,BE,相交于点H,
∵E为AD的中点,G为BC的中点,
∴DE=
1 |
2 |
1 |
2 |
∵四边形ABCD为平行四边形,
∴AD=BC,AD∥BC,
∴DE=BG,DE∥BG,
∴四边形EBGD为平行四边形,
∴BE∥DG,
∴∠H=∠2,
∵∠3=∠2,
∴∠H=∠3,
∴BF=HF,
∵∠1=∠2,
∴∠H=∠1,
∵E为AD的中点,
∴AE=DE,
在△AEB和△DEH中,
|
∴△AEB≌△DEH,
∴AB=DH,
∵AB=CD,
∴CD=DH,
∵DH=HF+FD,HF=BF,
∴DH=BF+FD,
∴CD=BF+FD.
看了 如图,已知平行四边形ABCD...的网友还看了以下:
设f(x)在[a,b]上可微,0小于a小于b.证明:在(a,b)内至少存在一点n.使得f(b)-f 2020-04-26 …
f(x)是定义在n+上的函数f(a)+f(b)=f(a+b)-abf(1)=1f(x)是定义在n+ 2020-05-15 …
f(x)是定义在R上的函数,且对任意实数x,y都有f(x+y)=f(x)+f(y)-1成立,当f( 2020-06-02 …
设在区间[0,1]上f''(x)>0,则f'(0)f'(1)和f(1)-f(0)的大小顺序是设在区 2020-06-08 …
关于拉格朗日中值定理两个前提条件:f(x)在[a,b]上连续,在(a,b)上可导.若[a,b]换成 2020-06-22 …
运动员用双手握住竖直的竹竿匀速上攀和匀速下滑时,他所受的摩擦力分别为f上和f下,那么它们的关系是( 2020-07-04 …
设f(x)在[a,b]上连续且可导,求证存在一点ξ∈(a,b),使f(b)-f(设f(x)在[a, 2020-07-13 …
已知f(x)在区间(﹣∞,+∞)上是减函数,a,b∈R,且a+b≤0,则下列正确的是?A.f(a) 2020-07-14 …
(2014•达州一模)定义:如果函数y=f(x)在区间[a,b]上存在x1,x2(a<x1<x2< 2020-07-22 …
已知f(x)在R上是增函已知f(x)在R上是增函数,a,b∈R,且a+b≤0,则有[]A、f(a)+ 2020-12-08 …