早教吧作业答案频道 -->数学-->
∫x^3sin^2xdx
题目详情
∫x^3 sin^2xdx
▼优质解答
答案和解析
∫ x^3sin^2x dx
= ∫ x^3 * (1 - cos(2x))/2 dx
= (1/8)x^4 - (1/2)K
where K = ∫ x^3cos(2x) dx
令f = x^3 and g = cos(2x),以下分别对f求导,对g求积分
f = x^3 g = cos2x
f' = 3x^2 g(1) = (1/2)sin(2x)
f'' = 6x g(2) = (- 1/4)cos(2x)
f''' = 6 g(3) = (- 1/8)sin(2x)
f'''' = 0 g(4) = (1/16)cos(2x)、这个是分部积分法的速解法
于是∫ x^3cos(2x) dx
= [f * g(1)] - [f' * g(2)] + [f'' * g(3)] - [f''' * g(4)]
= [x^3 * (1/2)sin(2x)] - [3x^2 * (- 1/4)cos(2x)] + [6x * (- 1/8)sin(2x)] - [6 * (1/16)cos(2x)]
= (1/2)x^3sin(2x) + (3/4)x^2cos(2x) - (3/4)xsin(2x) - (3/8)cos(2x)
原式 = (1/8)x^4 - (1/4)x^3sin(2x) - (3/8)x^2cos(2x) + (3/8)xsin(2x) + (3/16)cos(2x) + C
= ∫ x^3 * (1 - cos(2x))/2 dx
= (1/8)x^4 - (1/2)K
where K = ∫ x^3cos(2x) dx
令f = x^3 and g = cos(2x),以下分别对f求导,对g求积分
f = x^3 g = cos2x
f' = 3x^2 g(1) = (1/2)sin(2x)
f'' = 6x g(2) = (- 1/4)cos(2x)
f''' = 6 g(3) = (- 1/8)sin(2x)
f'''' = 0 g(4) = (1/16)cos(2x)、这个是分部积分法的速解法
于是∫ x^3cos(2x) dx
= [f * g(1)] - [f' * g(2)] + [f'' * g(3)] - [f''' * g(4)]
= [x^3 * (1/2)sin(2x)] - [3x^2 * (- 1/4)cos(2x)] + [6x * (- 1/8)sin(2x)] - [6 * (1/16)cos(2x)]
= (1/2)x^3sin(2x) + (3/4)x^2cos(2x) - (3/4)xsin(2x) - (3/8)cos(2x)
原式 = (1/8)x^4 - (1/4)x^3sin(2x) - (3/8)x^2cos(2x) + (3/8)xsin(2x) + (3/16)cos(2x) + C
看了 ∫x^3sin^2xdx...的网友还看了以下:
已知tanx=2,求下列格式的值1(2sinx+3cosx)/(4sinx-9cosx)2(2si 2020-04-07 …
几道高数的作业,1.求曲线y=(x+2)(e^-1/x)的渐近线2.计算∫(e^-x)sin(2x 2020-05-13 …
1.f(x)=-3sin(wx+a),对于任意的X都有f(pai/3+x)=f(pai/3-x), 2020-06-04 …
1.已知钝角a的中边经过点P(sin2X,sin4X),且cosX=1/2,则a为2.f(x)=l 2020-06-07 …
∫x^3sin^2xdx 2020-06-13 …
已知函数f(x)=2根号3sin(x/2+兀/4)cos(x/2+兀/4)-sin(x+兀)已知函 2020-06-25 …
分部积分法求∫x^2sin^2xdx,∫In^2xdx要过程 2020-07-22 …
已知函数f(x)=√3sinωxcosωx-cos^ωx+3/2的最小正周期为π,求函数解析式最前 2020-08-03 …
∫xf(x)dx=e^2x+c求∫1/f(x)dx是这样的书上是通过分部积分的方法来做的,而我是直 2020-08-03 …
已知函数f(x)=sin(π/2-x)-√3sin(π-x)求解已知函数f(x)=sin(π/2-x 2021-01-31 …