早教吧作业答案频道 -->数学-->
1.证明sin2nx=sin((2n+1)x)cosx–cos((2n+1)x)sinx2.Sin4X/2sinX=1/20
题目详情
1.证明sin 2 nx = sin((2n + 1)x) cos x – cos((2n + 1)x) sin x
2.Sin 4X/ 2sinX=1/2 0 < x < π.
..我很笨的,具体点
2.Sin 4X/ 2sinX=1/2 0 < x < π.
..我很笨的,具体点
▼优质解答
答案和解析
sin[(2n + 1)x]cosx - cos[(2n + 1)x]sinx
= sin[(2n + 1)x - x]
= sin(2nx + x - x)
= sin(2nx)
公式:sin(x ± y) = sinxcosy ± cosxsiny
sin4x/(2sinx) = 1/2,0 < x < π
sin4x = sinx
sin4x - sinx = 0
2cos[(4x + x)/2]sin[(4x - x)/2] = 0,公式sinx - siny = 2cos[(x + y)/2]sin[(x - y)/2]
cos(5x/2)sin(3x/2) = 0
cos(5x/2) = 0 OR sin(3x/2) = 0
5x/2 = π/2 OR 3x/2 = 0 OR 3x/2 = π,∵cos(π/2) = 0,sin(0) = 0,sin(π) = 0
x = π/5 OR x = 0 OR x = 2π/3,已知x > 0所以舍掉x = 0
∴x = π/5 OR x = 2π/3
= sin[(2n + 1)x - x]
= sin(2nx + x - x)
= sin(2nx)
公式:sin(x ± y) = sinxcosy ± cosxsiny
sin4x/(2sinx) = 1/2,0 < x < π
sin4x = sinx
sin4x - sinx = 0
2cos[(4x + x)/2]sin[(4x - x)/2] = 0,公式sinx - siny = 2cos[(x + y)/2]sin[(x - y)/2]
cos(5x/2)sin(3x/2) = 0
cos(5x/2) = 0 OR sin(3x/2) = 0
5x/2 = π/2 OR 3x/2 = 0 OR 3x/2 = π,∵cos(π/2) = 0,sin(0) = 0,sin(π) = 0
x = π/5 OR x = 0 OR x = 2π/3,已知x > 0所以舍掉x = 0
∴x = π/5 OR x = 2π/3
看了 1.证明sin2nx=sin...的网友还看了以下:
1+x+x的2次方+x的3次方+...+x的n次方+...(n接近无穷大)=s=(1-x的n次方) 2020-05-14 …
高数极限两个题1.设X(1)=1,X(n+1)=1+X(n)/(1+X(n)),(n=1,2,3. 2020-05-14 …
可以参考的公式是:s[1]=a[1];s[n]=s[n-1]>=0?s[n-1]+a[n]:a[n 2020-05-14 …
(1)已知x>-1,n∈N*,求证:(1+x)n≥1+nx(2)已知m>0,n∈N*,ex≥m+n 2020-05-17 …
求数项级数∑(n=1)1/[n*(2n+1)*(2^n)]的和,解题过程中的问题:(1)怎样由所给 2020-06-03 …
设y=x^u,求y^n=?这是书上的解法是y'=ux^(u-1),y''=u(u-1)x^(u-2 2020-06-18 …
位移..Sn-S(n-1)=at^2的证明做匀变速运动的物体在各个连续相等的时间t内的位移分别是s 2020-07-04 …
急求递推数列数列a(n)前N项和为S(n)s(n+1)=(s(n)+2^0.5)^2a(1)=2求 2020-07-22 …
x∑n(x^n-1)=x/(1-x)^2x∑n(x^n-1)=x/(1-x)^2x∑n(x^n-1 2020-08-02 …
若An是(1+x)^n+1(n∈N)的展开式中含X^2项的系数,(1)求S=∑(i=1到n)ai^ 2020-08-03 …