早教吧作业答案频道 -->数学-->
什么叫点的轨迹方程
题目详情
什么叫点的轨迹方程
▼优质解答
答案和解析
轨迹方程 符合一定条件的动点所形成的图形,或者说,符合一定条件的点的全体所组成的集合,叫做满足该条件的点的轨迹.
轨迹,包含两个方面的问题:凡在轨迹上的点都符合给定的条件,这叫做轨迹的纯粹性(也叫做必要性);凡不在轨迹上的点都不符合给定的条件,也就是符合给定条件的点必在轨迹上,这叫做轨迹的完备性(也叫做充分性).
轨迹方程实际上就是轨迹曲线的方程.
例题:已知线段AB的端点B的坐标是(4,3),端点A在圆(x+1)^2+y^2=4上运动,求线段AB的中点的轨迹方程.
分析:如图,点A运动收起点M的运动,而点A在已知圆上运动,点A的坐标满足方程(x+1)^2+y^2=4.建立点M与点A坐标之间的关系,就可以建立以点M的坐标满足的条件,求出点M的轨迹方程.
设点M的坐标是(x,y),点A的坐标是(X,Y)(注意大小写是不同的).由于点B的坐标是(4,3),且点M是线段AB的中点,
所以 x=(X+4)/2,y=(Y+3)/2,
于是有 X=2x-4,Y=2y-3.①
因为点A有圆(x+1)^2+y^2=4上运动,所以点A的坐标满足方程
(x+1)^2+y^2=4
即 (X+1)^2+Y^2=4 ②
把①代入②,得
(2x-4+1)^2+(2y-3)^2=4
整理,得
(x-3/2)^2+(y-3/2)^2=1
所以,点M的轨迹方程是心(3/2,3/2)为圆心,半径长是1的圆
轨迹,包含两个方面的问题:凡在轨迹上的点都符合给定的条件,这叫做轨迹的纯粹性(也叫做必要性);凡不在轨迹上的点都不符合给定的条件,也就是符合给定条件的点必在轨迹上,这叫做轨迹的完备性(也叫做充分性).
轨迹方程实际上就是轨迹曲线的方程.
例题:已知线段AB的端点B的坐标是(4,3),端点A在圆(x+1)^2+y^2=4上运动,求线段AB的中点的轨迹方程.
分析:如图,点A运动收起点M的运动,而点A在已知圆上运动,点A的坐标满足方程(x+1)^2+y^2=4.建立点M与点A坐标之间的关系,就可以建立以点M的坐标满足的条件,求出点M的轨迹方程.
设点M的坐标是(x,y),点A的坐标是(X,Y)(注意大小写是不同的).由于点B的坐标是(4,3),且点M是线段AB的中点,
所以 x=(X+4)/2,y=(Y+3)/2,
于是有 X=2x-4,Y=2y-3.①
因为点A有圆(x+1)^2+y^2=4上运动,所以点A的坐标满足方程
(x+1)^2+y^2=4
即 (X+1)^2+Y^2=4 ②
把①代入②,得
(2x-4+1)^2+(2y-3)^2=4
整理,得
(x-3/2)^2+(y-3/2)^2=1
所以,点M的轨迹方程是心(3/2,3/2)为圆心,半径长是1的圆
看了 什么叫点的轨迹方程...的网友还看了以下:
军队战术中的方向:5点钟、9点钟方向等是表示什么意思?这方向有什么规则?或者说以什么为依据来判断? 2020-05-02 …
将苯加入溴水中,充分振荡,发现溴水褪色,于是该同学认为所查资料有误.你同意他的观点么,为什么? 2020-06-15 …
关于函数凹凸点判断,书上说如果f(x)的一阶导数单减就有凸点,那我想问f(x)=ln(x)的一阶导 2020-06-30 …
钝角三角形三条高交于一点么?为什么?同上.40分不等三角形的高不都是直线么。钝角三角形高怎么相交的 2020-07-30 …
函数y=IsinxI在[0,0]点可导不?有拐点么?函数Y等于绝对值sinx,其在[0,0]点以及 2020-07-31 …
六级如何能考580分?我年底第一次考的六级480,感觉分数太少了想提高100分,在六月的考试中.这还 2020-11-07 …
成语如什么方什么 2020-11-08 …
在对某浑浊的天然水进行净化时,某同学通过过滤得到了透明,澄清的液体,他认为自己得到了纯水,你同意他的 2020-12-10 …
y=[1/x]的间断点?[]不是取整符号么?那样不应该有好多个间断点么?为什么间断点是x=0呢? 2020-12-14 …
伟大航路与红土大陆不是有两个交点么为什么只能从华利斯山进入 2021-01-16 …
相关搜索:什么叫点的轨迹方程