早教吧作业答案频道 -->其他-->
在120°的二面角P-a-Q的两个面P和Q内,分别有点A和点B已知点A和点B到棱a的距离分别为2和4,且线段AB=10,(1)求直线AB和棱a所成的角;(2)求直线AB和平面Q所成的角.
题目详情
在120°的二面角P-a-Q的两个面P和Q内,分别有点A和点B 已知点A和点B到棱a的距离分别为2和4,且线段AB=10,
(1)求直线AB和棱a所成的角;
(2)求直线AB和平面Q所成的角.
(1)求直线AB和棱a所成的角;
(2)求直线AB和平面Q所成的角.
▼优质解答
答案和解析
(1)在平面P内作直线AD⊥a于点D,在平面Q内,作直线BE⊥a于点E,
从点D作a的垂线与从点B作a的平行线相交于点C.
∴∠ABC等于AB和a所成的角,
∠ADC为两面角P-a-Q的平面角,
∴∠ADC=120°,
又AD=2,BCDE为矩形,∴CD=BE=4.
连接AC,由余弦定理得AC2=AD2+CD2-2AD•CDcos∠ADC=22+42-2×2×4×cos120°=28.
∴AC=2
.
又∵AD⊥a,CD⊥a,∴a⊥平面ACD,
∵BC∥a,∴BC⊥平面ACD,
∴BC⊥AC.
在直角△ABC中,sin∠ABC=
=
,
∴∠ABC=arcsin
.
(2)在△ACD所在的平面内,作AF⊥CD交CD的延长线于点F.
∵平面ACD⊥平面Q,∴AF⊥平面Q.
在△ADF中,∠ADF=60°,AD=2,∴AF=2sin60°=
.
连接BF,于是∠ABF是AB和平面Q所成的角,
在△ABF为直角三角形,
∴sin∠ABF=
=
.∠ABF=arcsin
.
从点D作a的垂线与从点B作a的平行线相交于点C.
∴∠ABC等于AB和a所成的角,
∠ADC为两面角P-a-Q的平面角,
∴∠ADC=120°,
又AD=2,BCDE为矩形,∴CD=BE=4.
连接AC,由余弦定理得AC2=AD2+CD2-2AD•CDcos∠ADC=22+42-2×2×4×cos120°=28.
∴AC=2
7 |
又∵AD⊥a,CD⊥a,∴a⊥平面ACD,
∵BC∥a,∴BC⊥平面ACD,
∴BC⊥AC.
在直角△ABC中,sin∠ABC=
AC |
AB |
| ||
5 |
∴∠ABC=arcsin
| ||
5 |
(2)在△ACD所在的平面内,作AF⊥CD交CD的延长线于点F.
∵平面ACD⊥平面Q,∴AF⊥平面Q.
在△ADF中,∠ADF=60°,AD=2,∴AF=2sin60°=
3 |
连接BF,于是∠ABF是AB和平面Q所成的角,
在△ABF为直角三角形,
∴sin∠ABF=
AF |
AB |
| ||
10 |
| ||
10 |
看了 在120°的二面角P-a-Q...的网友还看了以下:
问几个c问题1,设x=2.5,y=4.7,a=7,则x+a%3*(int)(x+y)%2/4=2, 2020-04-08 …
若直线x/a+y/b=1与圆x²+y²=1有公共点,则1/a²+1/b²≥1.这是怎么算出来的呢? 2020-05-15 …
关于直线的解析几何已知点P(a,b)与Q(1,0)在直线2x-3y+1=0的两侧,则下列两种说法哪 2020-05-22 …
说出下列命题的等价命题:(1)一元二次方程有实数根(2)三角形ABC是直角三角形(角C是直角).证 2020-06-02 …
1)直线X-2Y-2K=0与2X-Y-K=0上,则K的值为()(A)1(B)2(C)-1(D)02 2020-07-22 …
已知a,b,c两两垂直,|a|=1,|b|=2,|c|=3,求(1)r=a+b+c的长;(2)r与 2020-07-30 …
已知圆x^2+y^2+2x-4y+1=0关于直线2ax-by+2=0(a>0,b>0)对称,则4/ 2020-08-01 …
若直角三角形的两条直角边为a,b,斜边长为C,斜边长为h,则有A,ab=h²B,1/a+1/b=1 2020-08-02 …
1.若直线2ax-by+2=0(a>0,b>0),被圆x^2+y^2+2x-4y+1=0截得的弦长为 2020-11-24 …
设实数a.b.c满足a≥b≥c,且√(1/a^2+1/b^2+1/c^2)=|1/a+1/b+1/c 2020-12-31 …