早教吧作业答案频道 -->数学-->
一道圆锥曲线问题,有一定难度,已知椭圆C:x^2/4+y^2=1及定点P(t,0)(t>0),斜率为0.5的直线L经过点P并与椭圆C交于不同的两点A、B,且对于椭圆上任意一点M,都存在θ∈[0,2π],使得OM=cosθ*OA+sinθ*OB(OM,OA
题目详情
一道圆锥曲线问题,有一定难度,
已知椭圆C:x^2/4+y^2=1及定点P(t,0) (t>0),斜率为0.5的直线L经过点P并与椭圆C交于不同的两点A、B,且对于椭圆上任意一点M,都存在θ∈[0,2π],使得OM=cosθ*OA+sinθ*OB(OM,OA,OB为向量)成立,试求出满足条件的实数t的值.
已知椭圆C:x^2/4+y^2=1及定点P(t,0) (t>0),斜率为0.5的直线L经过点P并与椭圆C交于不同的两点A、B,且对于椭圆上任意一点M,都存在θ∈[0,2π],使得OM=cosθ*OA+sinθ*OB(OM,OA,OB为向量)成立,试求出满足条件的实数t的值.
▼优质解答
答案和解析
设直线L的方程为 y=1/2*(x-t)
代入椭圆C方程得:2x^2-2tx+t^2-4=0
设M,A,B坐标分别为(x,y),(x1,y1),(x2,y2)
因为 OM=cosθ*OA+sinθ*OB
所以 x=cosθ*x1+sinθ*x2
y=cosθ*y1+sinθ*y2
因此M点坐标为(cosθ*x1+sinθ*x2,cosθ*y1+sinθ*y2
因为 M 在椭圆C上
所以 (cosθ*x1+sinθ*x2)^2+4*(cosθ*y1+sinθ*y2)^2=4
cos^2θ*x1^2+2cosθsinθ*x1x2+sin^2θ*x2^2+4cos^2θ*y1^2+8sinθcosθy1y2+4sin^2θy2^2=4
cos^2θ*(x1^2+4y1^2)+sin^2θ*(x2^2+4y2^2)+2sinθcosθ(x1x2+4*y1y2)=4
因为 A,B 也在椭圆上
所以 x1^2+4y1^2=x2^2+4y2^2=4
因此上述式子化简得
4cos^2θ+4sin^2θ+2sinθcosθ(x1x2+4*y1y2)=4
2sinθcosθ(x1x2+4*y1y2)=0
因为对任意 θ 都有上述式子成立
所以 x1x2+4*y1y2=0
因为 A.B 在直线L上
y1=(1/2)*x1-(1/2)*t
y2=(1/2)*x2-(1/2)*t
代入 x1x2+4*y1y2=0 得
2*x1x2-(x1+x2)t+t^2=0
由韦达定理
t^2-4-t^2+t^2=0
解得t=正负2
因为 t>0
所以 t=2
代入椭圆C方程得:2x^2-2tx+t^2-4=0
设M,A,B坐标分别为(x,y),(x1,y1),(x2,y2)
因为 OM=cosθ*OA+sinθ*OB
所以 x=cosθ*x1+sinθ*x2
y=cosθ*y1+sinθ*y2
因此M点坐标为(cosθ*x1+sinθ*x2,cosθ*y1+sinθ*y2
因为 M 在椭圆C上
所以 (cosθ*x1+sinθ*x2)^2+4*(cosθ*y1+sinθ*y2)^2=4
cos^2θ*x1^2+2cosθsinθ*x1x2+sin^2θ*x2^2+4cos^2θ*y1^2+8sinθcosθy1y2+4sin^2θy2^2=4
cos^2θ*(x1^2+4y1^2)+sin^2θ*(x2^2+4y2^2)+2sinθcosθ(x1x2+4*y1y2)=4
因为 A,B 也在椭圆上
所以 x1^2+4y1^2=x2^2+4y2^2=4
因此上述式子化简得
4cos^2θ+4sin^2θ+2sinθcosθ(x1x2+4*y1y2)=4
2sinθcosθ(x1x2+4*y1y2)=0
因为对任意 θ 都有上述式子成立
所以 x1x2+4*y1y2=0
因为 A.B 在直线L上
y1=(1/2)*x1-(1/2)*t
y2=(1/2)*x2-(1/2)*t
代入 x1x2+4*y1y2=0 得
2*x1x2-(x1+x2)t+t^2=0
由韦达定理
t^2-4-t^2+t^2=0
解得t=正负2
因为 t>0
所以 t=2
看了 一道圆锥曲线问题,有一定难度...的网友还看了以下:
如图所示,在边长为5+2的正方形ABCD中,以A为圆心画一个扇形,以O为圆心画一个圆,M,N,K为 2020-04-27 …
额…高三文科数学考试,兄弟,会的进,愁死了!在直角坐标系xOx中,以O为圆心得圆与直线x-根号3y 2020-05-02 …
如果一个直角三角形两条直角边分别长5厘米和3厘米.(1)以长边为轴旋转一周所得圆锥的底面直径是多少 2020-05-12 …
工地上有一个近似于圆锥的沙堆,量得它的高是1.5米,底面直径是4米.这个沙堆的体积是多少立方米?学 2020-05-21 …
圆计算和三角形急1.在矩形ABCD中,AB=1,若直角三角形ABC绕AB旋转所得圆锥的侧面积和矩形 2020-05-21 …
在两个等底等高的圆柱和圆锥中装满同一液体,问:液体对容器底面压强相等吗?书上说液体压强与容器形状无 2020-07-21 …
已知一个圆锥内接于球O(圆锥的底面圆周及顶点均在球面上),若球的表面积为100π,圆锥的高是底面半 2020-07-31 …
关于圆锥的表面积圆锥的表面积=派r^2+派rl但是我觉得圆锥的表面积是3派r^2因为圆锥的底面是派 2020-08-01 …
(1)如图,设点P,Q是线段A得的三等分点,若OA=a,O得=得,试用a,得表示OP,OQ,并判断 2020-08-02 …
据报道,在小00℃、70uP你下由八氧化碳和氢气合成乙醇已成为现实.其反应如下:得了O得(g)+6s 2020-11-10 …