早教吧作业答案频道 -->语文-->
如何开展图形与几何的教学
题目详情
如何开展图形与几何的教学
▼优质解答
答案和解析
黄金中学 梁彪
图形与几何是初中数学教学的重要模块之一.在我们的几何教学中,通过几何证明,培养学生的推理能力,我们的教师还是方法多多的.这次新课标的修改又增加了几何直观,让我觉得在几何教学中培养学生的空间观念、几何直观与推理能力,任重道远,下面谈谈自己一些想法:
一、关于学生空间观念的培养
1、数学来源于生活又服务于生活.初中阶段图形与几何的课程内容中包括相交线、平行线、三角形、四边形、圆,这些都是生活中常见的基本图形,因此在平时的教学中,特别是概念课的教学中常常要对学生提出问题:请你举例生活中你遇得到的三角形、四边形、圆、等图形的实例.尤其是在七年级《图形的认识》的起始章节,提出这样的问题学生觉得贴近生活,又好奇又新鲜,极大的激发了学生的学习兴趣.同时,这让长此以往的训练,时间久了,在学习一个新图形,学生就会主动的从现实世界中去抽象几何图形,提高了学生对几何图形的感知能力.
我们要从学生的生活实际入手,创设一定的数学生活情境引导学生感知、理解实物,引导学生在摸一摸、量一量、议一议的过程中探索图形的特征,使学生在头脑中建立一个个的模型.学生的空间知识来自丰富的现实原型,与现实生活关系非常密切,这些现实生活中丰富的原型是发展学生空间想象的宝贵资源.因此,在教学中,要将空间知识和现实生活联系起来,要引导学生经常运用图形的特征去想象,解决生活中的各种实际问题,发展他们的空间想象力,从而发展学生的空间观念.
2、教会学生识图,培养图感,不时的让学生画图,在教学中多小结基本图形,如平行线间加角平分线得等腰三角形.初一学生尤其要这样做.
几何直观是指利用图形描述几何或者其他数学问题、探索解决问题的思路、预测结果.几何直观能力主要包括空间想像力、直观洞察能力、用图形语言来思考问题能力.几何直观不仅在图形与几何的学习中发挥着不可替代的作用,而且贯穿在整个数学学习过程中.下面谈谈我对培养学生几何直观能力的肤浅见解.
1、利用几何直观培养学生空间想象力.
教学中关注学生的基本生活经验和生活经历,注重引导学生把生活中对图形的感受与有关知识建立联系,让学生积极主动的参与学习中.如在《直线与线段》教学中我通过一组图片,视觉上给同学们直观的认识,引出直线,让学生很容易发现直线的特点,尤其直线是一个理想化的概念,几何直观的感受凸显的更加重要.学习直观几何,就像书上所说采用学生喜爱的看一看、折一折、剪一剪、拼一拼、摆一摆、量一量、画一画等具体、实际的活动方式,引导学生通过亲自触摸、观察、测量、制作和实验,把视觉、听觉、触觉、动觉等协同起来,培养学生空间想象力,从而使学生掌握图形特征,形成空间观念.
2、注重模型的作用,让学生参与模型制作
新课标在几何数学中强调几何学习的直观性,强调实物、模型对几何学习的作用.课外让学生亲手制作立体几何模型,动手做一做,可以更直接的感受空间几何图形的特征.
如在教学平行四边形性质这一节中,我让学生根据平行四边形的概念回家去制作平行四边形模具,在模具的制作中,学生加深了对概念的理解,更为后面研究平行四边形的性质打下了很好直观印象.
3、充分利用几何直观培养学生数形结合能力.
在学习正比例函数图像时,先引导学生用描点法画出一幅表示正比例函数的图像,在描点的过程中,引导学生把所描出的点与表中的数据相对照,让学生初步理解图像上各点所表示的实际意义,再通过观察,使学生发现所描出的这些点正好在一条直线上,清楚地认识正比例函数图像的特点,并借助直观的图像进一步理解两种量同时扩大或缩小的变化规律,理解正比例函数的性质.画出图像后,进一步认识图像上任意一点所表示的实际意义,初步体会正比例函数图像的实际应用.通过正比例函数图像与正比例函数关系式的转换,加深对正比例函数的理解..
说到推理能力的培养,我们往往把重点放在几何题的证明上,显然这点认识是不全面的.其实,推理应包括合情推理和演绎推理,而合情推理和演绎推理的能力的培养,图形与几何是一个很重要的领域,但不是唯一的领域,在很多领域里面都有所体现.代数中法则公式的获得,我们也可以经历由合情推理到演绎推理的过程,包括统计知识里也可以同样培养学生的推理能力.
而对于合情推理的培养,我们可以设置好的问题情景,给他一个很开阔的空间,才能够感受到合情推理的价值和意义所在.比如说在学习三角形中位线定理时,我们可能遇到过这样的问题画一个任意的四边形,连接这个四边形四边中点,得到了一个我们叫做中点四边形的图形.同样是这个素材,如果我们老师让学生求证这个中点四边形是一个平行四边形,他很快的就会过渡到演绎推理;可如果我们能提出一个更开放性的问题同学们观察我们新得到的这个四边形你觉得它的形状有什么特点,可能是怎样的四边形呢?那学生可能就要通过很多的手段直观的观察、测量、猜想等一系列手段去思考,而这个问题又不像有一些问题那么肤浅,它确实有一定的思考空间,真得琢磨琢磨,只有通过观察、测量、想象才会产生它可能是平行四边形的猜想,这个过程就显得更真实.有了这样一个过程,我们进而再去提问为什么它是一个平行四边形?,通过连接对角线的辅助线,构造三角形的中位线,逐渐把这个问题证明了.当然这样的例子不只一个,我们应该更多地去挖掘.
在代数的学习中,其实也可以培养推理能力,如代数值大小的比较,即若要证明ab,只需要证a-b0即可,通过这种形式的训练,也可培养学生的推理能力.
同样这样一个问题,如果我们直接要求请证明两个奇数的平方差是 8 的倍数,从结果上好像是一样的,但像前面那样设置问题的话,给学生的就不仅仅是得到这个结论了,而是他经历了观察猜想,自己又举案例去支持他的猜想,再想办法用数学符号来表达规律,进一步通过代数运算去证明.这个例子启示我们,把以前一些纯粹只有演绎这样成分的问题,尽可能改造成既有演绎又有合情推理的过程,在这当中学生的能力就得到了培养.
所以我们在平时的教学过程当中,把推理能力贯穿到每个领域、贯穿到每一节课当中,多角度全方位培养学生的推理能力.
图形与几何是初中数学教学的重要模块之一.在我们的几何教学中,通过几何证明,培养学生的推理能力,我们的教师还是方法多多的.这次新课标的修改又增加了几何直观,让我觉得在几何教学中培养学生的空间观念、几何直观与推理能力,任重道远,下面谈谈自己一些想法:
一、关于学生空间观念的培养
1、数学来源于生活又服务于生活.初中阶段图形与几何的课程内容中包括相交线、平行线、三角形、四边形、圆,这些都是生活中常见的基本图形,因此在平时的教学中,特别是概念课的教学中常常要对学生提出问题:请你举例生活中你遇得到的三角形、四边形、圆、等图形的实例.尤其是在七年级《图形的认识》的起始章节,提出这样的问题学生觉得贴近生活,又好奇又新鲜,极大的激发了学生的学习兴趣.同时,这让长此以往的训练,时间久了,在学习一个新图形,学生就会主动的从现实世界中去抽象几何图形,提高了学生对几何图形的感知能力.
我们要从学生的生活实际入手,创设一定的数学生活情境引导学生感知、理解实物,引导学生在摸一摸、量一量、议一议的过程中探索图形的特征,使学生在头脑中建立一个个的模型.学生的空间知识来自丰富的现实原型,与现实生活关系非常密切,这些现实生活中丰富的原型是发展学生空间想象的宝贵资源.因此,在教学中,要将空间知识和现实生活联系起来,要引导学生经常运用图形的特征去想象,解决生活中的各种实际问题,发展他们的空间想象力,从而发展学生的空间观念.
2、教会学生识图,培养图感,不时的让学生画图,在教学中多小结基本图形,如平行线间加角平分线得等腰三角形.初一学生尤其要这样做.
几何直观是指利用图形描述几何或者其他数学问题、探索解决问题的思路、预测结果.几何直观能力主要包括空间想像力、直观洞察能力、用图形语言来思考问题能力.几何直观不仅在图形与几何的学习中发挥着不可替代的作用,而且贯穿在整个数学学习过程中.下面谈谈我对培养学生几何直观能力的肤浅见解.
1、利用几何直观培养学生空间想象力.
教学中关注学生的基本生活经验和生活经历,注重引导学生把生活中对图形的感受与有关知识建立联系,让学生积极主动的参与学习中.如在《直线与线段》教学中我通过一组图片,视觉上给同学们直观的认识,引出直线,让学生很容易发现直线的特点,尤其直线是一个理想化的概念,几何直观的感受凸显的更加重要.学习直观几何,就像书上所说采用学生喜爱的看一看、折一折、剪一剪、拼一拼、摆一摆、量一量、画一画等具体、实际的活动方式,引导学生通过亲自触摸、观察、测量、制作和实验,把视觉、听觉、触觉、动觉等协同起来,培养学生空间想象力,从而使学生掌握图形特征,形成空间观念.
2、注重模型的作用,让学生参与模型制作
新课标在几何数学中强调几何学习的直观性,强调实物、模型对几何学习的作用.课外让学生亲手制作立体几何模型,动手做一做,可以更直接的感受空间几何图形的特征.
如在教学平行四边形性质这一节中,我让学生根据平行四边形的概念回家去制作平行四边形模具,在模具的制作中,学生加深了对概念的理解,更为后面研究平行四边形的性质打下了很好直观印象.
3、充分利用几何直观培养学生数形结合能力.
在学习正比例函数图像时,先引导学生用描点法画出一幅表示正比例函数的图像,在描点的过程中,引导学生把所描出的点与表中的数据相对照,让学生初步理解图像上各点所表示的实际意义,再通过观察,使学生发现所描出的这些点正好在一条直线上,清楚地认识正比例函数图像的特点,并借助直观的图像进一步理解两种量同时扩大或缩小的变化规律,理解正比例函数的性质.画出图像后,进一步认识图像上任意一点所表示的实际意义,初步体会正比例函数图像的实际应用.通过正比例函数图像与正比例函数关系式的转换,加深对正比例函数的理解..
说到推理能力的培养,我们往往把重点放在几何题的证明上,显然这点认识是不全面的.其实,推理应包括合情推理和演绎推理,而合情推理和演绎推理的能力的培养,图形与几何是一个很重要的领域,但不是唯一的领域,在很多领域里面都有所体现.代数中法则公式的获得,我们也可以经历由合情推理到演绎推理的过程,包括统计知识里也可以同样培养学生的推理能力.
而对于合情推理的培养,我们可以设置好的问题情景,给他一个很开阔的空间,才能够感受到合情推理的价值和意义所在.比如说在学习三角形中位线定理时,我们可能遇到过这样的问题画一个任意的四边形,连接这个四边形四边中点,得到了一个我们叫做中点四边形的图形.同样是这个素材,如果我们老师让学生求证这个中点四边形是一个平行四边形,他很快的就会过渡到演绎推理;可如果我们能提出一个更开放性的问题同学们观察我们新得到的这个四边形你觉得它的形状有什么特点,可能是怎样的四边形呢?那学生可能就要通过很多的手段直观的观察、测量、猜想等一系列手段去思考,而这个问题又不像有一些问题那么肤浅,它确实有一定的思考空间,真得琢磨琢磨,只有通过观察、测量、想象才会产生它可能是平行四边形的猜想,这个过程就显得更真实.有了这样一个过程,我们进而再去提问为什么它是一个平行四边形?,通过连接对角线的辅助线,构造三角形的中位线,逐渐把这个问题证明了.当然这样的例子不只一个,我们应该更多地去挖掘.
在代数的学习中,其实也可以培养推理能力,如代数值大小的比较,即若要证明ab,只需要证a-b0即可,通过这种形式的训练,也可培养学生的推理能力.
同样这样一个问题,如果我们直接要求请证明两个奇数的平方差是 8 的倍数,从结果上好像是一样的,但像前面那样设置问题的话,给学生的就不仅仅是得到这个结论了,而是他经历了观察猜想,自己又举案例去支持他的猜想,再想办法用数学符号来表达规律,进一步通过代数运算去证明.这个例子启示我们,把以前一些纯粹只有演绎这样成分的问题,尽可能改造成既有演绎又有合情推理的过程,在这当中学生的能力就得到了培养.
所以我们在平时的教学过程当中,把推理能力贯穿到每个领域、贯穿到每一节课当中,多角度全方位培养学生的推理能力.
看了 如何开展图形与几何的教学...的网友还看了以下:
五年级《梦想的力量》的难题瑞恩与非洲的孩子们在一起会围绕“井”说些什么?看课文插图,展开想象写一段 2020-06-10 …
阅读下面文字,根据要求作文。佛学院的一名禅师在上课时把一幅中国地图展开问:“图上的河流有什么特点? 2020-06-19 …
一个圆柱体的侧面图展开是一个边长为12.56厘米的正方形,这个圆柱体的表面积是多少平方厘米?在水池 2020-07-03 …
如图是某几何体的展开图(1)请根据展开图画出该几何体的主视图;(2)若中间的矩形长为20πcm,宽 2020-08-01 …
为什么正五棱柱左视图展开的2个长方形不相等?三视图是根据自己所看到的?还是根据投影所形成的? 2020-08-01 …
英语翻译第一幅图:一个老人坐在沙发上,脸上表情很难过,沙发上放着一个是女儿动的生日礼物,另一个是儿 2020-08-01 …
如何根据展开图判断图形?如果展开图全是长方形或正方形时,应该考虑哪种几何图形呢? 2020-08-02 …
圆锥的表面展开图是由什么和什么练成的;圆锥侧面展开图中扇形的弧长等于什么?3.侧面可以展开成一个长 2020-08-02 …
习作。鲜花送给(想像作文)根据图展开想像,编写一个小故事。提示:1.这是谁的笑脸?他(她)为什么笑? 2020-12-08 …
图中的平面展开图是下面名称几何体的展开图,则立体图形与平面展开图不相符的是()A.三棱锥B.长方体C 2021-01-15 …
相关搜索:如何开展图形与几何的教学