早教吧 育儿知识 作业答案 考试题库 百科 知识分享

曲线y=ex+e−x2与直线x=0,x=t(t>0)及y=0围成一曲边梯形.该曲边梯形绕x轴旋转一周得一旋转体,其体积为V(t),侧面积为S(t),在x=t处的底面积为F(t).(Ⅰ)求S(t)V(t)的值;(Ⅱ)

题目详情
曲线y=
ex+e−x
2
与直线x=0,x=t(t>0)及y=0围成一曲边梯形.该曲边梯形绕x轴旋转一周得一旋转体,其体积为V(t),侧面积为S(t),在x=t处的底面积为F(t).
(Ⅰ)求
S(t)
V(t)
的值; 
(Ⅱ)计算极限
lim
t→+∞
S(t)
F(t)
▼优质解答
答案和解析
解 (Ⅰ)∵S(t)=2π
t
0
y
1+y′2
dx
y=
ex+e−x
2

y′=
ex−e−x
2

∴S(t)=2π
t
0
(
ex+e−x
2
)
1+
e2x−2+e−2x
4
dx
=2π
t
0
(
ex+e−x
2
)2dx
又V(t)=π
t
0
y2dx=π
t
0
(
ex+e−x
2
)2dx
S(t)
V(t)
=2.
(Ⅱ)∵在x=t处的底面积为F(t)=πy2|x=t=π(
et+e−t
2
)2,
lim
t→+∞
S(t)
F(t)
lim
t→+∞
t
0
(
ex+e−x
2
)2dx
π(
ex+e−x
2
)2

=
lim
t→+∞
2(
et+e−t
2
)2
2(
et+e−t
2
)(
et−e−t
2
)
lim
t→+∞
et+e−t
et−e−t

=
lim
t→+∞
e2t+1
e2t−1
=1
看了 曲线y=ex+e−x2与直线...的网友还看了以下: