早教吧作业答案频道 -->数学-->
如图,抛物线y=ax2+bx(a≠0)经过点A(2,0),点B(3,3),BC⊥x轴于点C,连接OB,等腰直角三角形DEF的斜边EF在x轴上,点E的坐标为(-4,0),点F与原点重合(1)求抛物线的解析式并直接写
题目详情
如图,抛物线y=ax2+bx(a≠0)经过点A(2,0),点B(3,3),BC⊥x轴于点C,连接OB,等腰直角三角形DEF的斜边EF在x轴上,点E的坐标为(-4,0),点F与原点重合
(1)求抛物线的解析式并直接写出它的对称轴;
(2)△DEF以每秒1个单位长度的速度沿x轴正方向移动,运动时间为t秒,当点D落在BC边上时停止运动,设△DEF与△OBC的重叠部分的面积为S,求出S关于t的函数关系式;
(3)点P是抛物线对称轴上一点,当△ABP是直角三角形时,请直接写出所有符合条件的点P坐标.
(1)求抛物线的解析式并直接写出它的对称轴;
(2)△DEF以每秒1个单位长度的速度沿x轴正方向移动,运动时间为t秒,当点D落在BC边上时停止运动,设△DEF与△OBC的重叠部分的面积为S,求出S关于t的函数关系式;
(3)点P是抛物线对称轴上一点,当△ABP是直角三角形时,请直接写出所有符合条件的点P坐标.
▼优质解答
答案和解析
(1)根据题意得
,
解得a=1,b=-2,
∴抛物线解析式是y=x2-2x,
对称轴是直线x=1;
(2)有3中情况:
①当0≤t≤3时,△DEF与△OBC重叠部分为等腰直角三角形,如图1:
S=
t2;
②当3<t≤4时,△DEF与△OBC重叠部分是四边形,如图2:
S=-
t2+3t-
;
③当4<t≤5时,△DEF与△OBC重叠部分是四边形,如图3:
S=-
t2+3t-
;
(3)当△ABP是直角三角形时,可得符合条件的点P坐标为(1,1)或(1,2)或(1,
)或(1,
).
|
解得a=1,b=-2,
∴抛物线解析式是y=x2-2x,
对称轴是直线x=1;
(2)有3中情况:
①当0≤t≤3时,△DEF与△OBC重叠部分为等腰直角三角形,如图1:
S=
1 |
4 |
②当3<t≤4时,△DEF与△OBC重叠部分是四边形,如图2:
S=-
1 |
4 |
9 |
2 |
③当4<t≤5时,△DEF与△OBC重叠部分是四边形,如图3:
S=-
1 |
2 |
1 |
2 |
(3)当△ABP是直角三角形时,可得符合条件的点P坐标为(1,1)或(1,2)或(1,
1 |
3 |
11 |
3 |
看了 如图,抛物线y=ax2+bx...的网友还看了以下:
如图,抛物线y=-5/4x^2+17/4x+1与y轴交于A点,过点A的直线与抛物线交于另一点B,过 2020-05-13 …
如图,在直角坐标系中,抛物线y=ax^2+bx+c(a不等于0)与x轴交于点A(-1,0),B(3 2020-05-16 …
如图 已知抛物线y=x2+bx+c与x轴交与A.B俩点【A在B点左侧】与y轴交与点C【0,-3】如 2020-05-16 …
如图,抛物线y=ax2+3ax+c(a>0)与y轴交于C点,与x轴交于A、B两点,A点在如图,抛物 2020-06-03 …
如图,抛物线y=x2+bx+c过点A(3,0),B(1,0),交y轴于点C,点P是该抛物线上一动点 2020-07-26 …
如图抛物线y=1/4x^2+bx+c与x轴交于A(-2,0)如图抛物线y=1/4x^2+bx+c与 2020-07-29 …
如图,抛物线y=-14x2+bx+c与x轴交于点A(2,0),交y轴于点B(0,52),直线y=kx 2020-11-01 …
在直角坐标系中,抛物线y=ax平方+bx+c(a不等于0)与x轴交点A(-1,0)、B(3,0)交y 2021-01-10 …
(2011.浙江)如图,在直角坐标系中,抛物线y=ax^2+bx+c与x轴交与点A(﹣1,0)如图, 2021-01-10 …
已知如图,抛物线y=x2+bx+c过点A(3,0),B(1,0),交y轴于点C,点P是该抛物线上一动 2021-01-12 …