早教吧作业答案频道 -->数学-->
如图,抛物线y=-5/4x^2+17/4x+1与y轴交于A点,过点A的直线与抛物线交于另一点B,过点如图,抛物线y=-5/4x^2+17/4x+1与y轴交于A点,过点A的直线与抛物线交于另一点B,过点B作BC⊥x轴,垂足为点C(3,0)1)求
题目详情
如图,抛物线y=-5/4x^2+17/4x+1与y轴交于A点,过点A的直线与抛物线交于另一点B,过点
如图,抛物线y=-5/4x^2+17/4x+1与y轴交于A点,过点A的直线与抛物线交于另一点B,过点B作BC⊥x轴,垂足为点C(3,0)
1)求直线AB的函数关系式
(2)动点P在线段OC上从原点以每秒一个单位的速度向C移动,过点P作PN⊥x轴,交直线AB于点M,交抛物线于点N,设点P移动的时间为t秒,MN的长度为s个单位,求s与t的函数关系式,并写出t的取值范围
(3)设在(2)的条件下(不考虑点P与点O,点C重合的情况),连接CM,BN,当t为何值时,四边形BCMN为平行四边形?问对于所求的t值,平行四边形BCMN是否菱形?请说明理由
如图,抛物线y=-5/4x^2+17/4x+1与y轴交于A点,过点A的直线与抛物线交于另一点B,过点B作BC⊥x轴,垂足为点C(3,0)
1)求直线AB的函数关系式
(2)动点P在线段OC上从原点以每秒一个单位的速度向C移动,过点P作PN⊥x轴,交直线AB于点M,交抛物线于点N,设点P移动的时间为t秒,MN的长度为s个单位,求s与t的函数关系式,并写出t的取值范围
(3)设在(2)的条件下(不考虑点P与点O,点C重合的情况),连接CM,BN,当t为何值时,四边形BCMN为平行四边形?问对于所求的t值,平行四边形BCMN是否菱形?请说明理由
▼优质解答
答案和解析
抛物线y=-(5/4)x²+(17/4)x+1与y轴交于A点,过点A的直线与抛物线交于另一点B,过点B作BC⊥
x轴,垂足为点C(3,0);1)求直线AB的函数关系式(2)动点P在线段OC上从原点以每秒一个单位的速度向C移动,过点P作PN⊥x轴,交直线AB于点M,交抛物线于点N,设点P移动的时间为t秒,MN的长度为s个单位,求s与t的函数关系式,并写出t的取值范围;(3)设在(2)的条件下(不考虑点P与点O,点C重合的情况),连接CM,BN,当t为何值时,四边形BCMN为平行四边形?问对于所求的t值,平行四边形BCMN是否菱形?请说明理由
(1)令x=0得y=1,故A点的坐标为(0,1);故可设过A点的直线方程为y=kx+1.(1);
再令抛物线中的x=3,得y=-(5/4)×9+(17/4)×3+1=3/2+1=5/2;故B点的坐标为(3,5/2),代入(1)
式得5/2=3k+1,故k=(5/2-1)/3=(3/2)/3=1/2,再代入(1)式即得直线方程为y=(1/2)x+1;
为所求.
(2).S=-(5/4)t²+(17/4)t+1-[(1/2)t+1]=-(5/4)t²+(15/4)t;(0≦t≦3)
(3)当∣MN∣=∣BC∣时四边形BCMN为平行四边形(一组对边平行且相等);
为此令-(5/4)t²+(15/4)t=5/2;化简得t²-3t+2=(t-2)(t-1)=0,故得t₁=1;t₂=2;
即当t=1秒或2秒时四边形BCMN是平行四边形.
当t=1时,M(1,3/2),C(3,0);∣MC∣=√[(1-3)²+(3/2)²]=√(4+9/4)=√(25/4)=5/2=∣BC∣
故此时(t=1秒)平行四边形BCMN是菱形;
当t=2时,M(2,2);C(3,0);∣MC∣=√[(2-3)²+2²]=√(1+4)=√5≠∣BC∣=5/2;
故此时(t=2秒)平行四边形BCMN不是菱形.
x轴,垂足为点C(3,0);1)求直线AB的函数关系式(2)动点P在线段OC上从原点以每秒一个单位的速度向C移动,过点P作PN⊥x轴,交直线AB于点M,交抛物线于点N,设点P移动的时间为t秒,MN的长度为s个单位,求s与t的函数关系式,并写出t的取值范围;(3)设在(2)的条件下(不考虑点P与点O,点C重合的情况),连接CM,BN,当t为何值时,四边形BCMN为平行四边形?问对于所求的t值,平行四边形BCMN是否菱形?请说明理由
(1)令x=0得y=1,故A点的坐标为(0,1);故可设过A点的直线方程为y=kx+1.(1);
再令抛物线中的x=3,得y=-(5/4)×9+(17/4)×3+1=3/2+1=5/2;故B点的坐标为(3,5/2),代入(1)
式得5/2=3k+1,故k=(5/2-1)/3=(3/2)/3=1/2,再代入(1)式即得直线方程为y=(1/2)x+1;
为所求.
(2).S=-(5/4)t²+(17/4)t+1-[(1/2)t+1]=-(5/4)t²+(15/4)t;(0≦t≦3)
(3)当∣MN∣=∣BC∣时四边形BCMN为平行四边形(一组对边平行且相等);
为此令-(5/4)t²+(15/4)t=5/2;化简得t²-3t+2=(t-2)(t-1)=0,故得t₁=1;t₂=2;
即当t=1秒或2秒时四边形BCMN是平行四边形.
当t=1时,M(1,3/2),C(3,0);∣MC∣=√[(1-3)²+(3/2)²]=√(4+9/4)=√(25/4)=5/2=∣BC∣
故此时(t=1秒)平行四边形BCMN是菱形;
当t=2时,M(2,2);C(3,0);∣MC∣=√[(2-3)²+2²]=√(1+4)=√5≠∣BC∣=5/2;
故此时(t=2秒)平行四边形BCMN不是菱形.
看了 如图,抛物线y=-5/4x^...的网友还看了以下:
过第四象限的直线与抛物线交于点A(0,3)和和点C,已知点C是抛物线的顶点,且抛物线的对称轴与Y粥 2020-05-16 …
如图,以A为顶点的抛物线l2是由抛物线l1:y=x2沿x轴向右平移2个单位后得到的,两抛物线相交于 2020-06-22 …
若两条抛物线的顶点相同,则称它们为“友好抛物线”,抛物线C1:y1=-2x2+4x+2与C2:u2 2020-06-30 …
如图所示,某建筑物有一抛物线形的大门,小强想知道这道门的高度.他先测出门的宽度AB=8m,然后用一 2020-07-08 …
(2014•沭阳县模拟)如果一条抛物线y=ax2+bx+c(a≠0)与x轴有两个交点,那么以这两个 2020-07-14 …
已知直线y=-x+2与x轴交于A点,与y轴交于B点,一抛物线经过A,B两点且对称轴为x=2求:1, 2020-07-22 …
如果一条抛物线与轴有两个交点,那么以该抛物线的顶点和这两个交点为顶点的三角形称为这条抛物线的“抛物 2020-07-26 …
如图,抛物线y=x2+bx+c过点A(3,0),B(1,0),交y轴于点C,点P是该抛物线上一动点 2020-07-26 …
如果一条抛物线y=ax2+bx+c(a≠0)与x轴有两个交点,那么以这两个交点和该抛物线的顶点、对 2020-07-29 …
已知抛物线y²=2px﹙p>0﹚的焦点为F,点p是抛物线上的一点,且抛物线上的一点,且其纵坐标为4 2020-08-01 …