早教吧 育儿知识 作业答案 考试题库 百科 知识分享

如图所示,在平面直角坐标系中,过坐标原点O的圆M分别交x轴、y轴于点A(6,0)、B(0,-8).(1)求直线AB的解析式;(2)若有一条抛物线的对称轴平行于y轴且经过M点,顶点C在圆M上,开

题目详情
如图所示,在平面直角坐标系中,过坐标原点O的圆M分别交x轴、y轴于点A(6,0)、B(0,-8).
(1)求直线AB的解析式;
(2)若有一条抛物线的对称轴平行于y轴且经过M点,顶点C在圆M上,开口向下,且经过点B,求此抛物线的解析式;
(3)设(2)中的抛物线与x轴交于D(x1,y1)、E(x2,y2)两点,且x1<x2,在抛物线上是否存在点P,使△PDE的面积是△ABC面积的
1
5
?若存在,求出P点的坐标;若不存在,请说明理由.
▼优质解答
答案和解析
(1)设直线AB的解析式为y=kx+b
根据题意,得:
6k+b=0
b=−8

解之,得k=
4
3
,b=-8
∴直线AB的解析式为y=
4
3
x-8

(2)设抛物线对称轴交x轴于F,
∵∠AOB=90°,
∴AB为圆M的直径,即AM=BM,
∴抛物线的对称轴经过点M,且与y轴平行,OA=6,
∴对称轴方程为x=3,
作对称轴交圆M于C,
∴MF是△AOB的中位线,
∴MF=
1
2
BO=4,
∴CF=CM-MF=1,
∵点C(3,1),由题意可知C(3,1)就是所求抛物线的顶点.
方法一:设抛物线解析式为y=a(x-3)2+1,
∵抛物线过点B(0,-8),
∴-8=a(0-3)2+1,
解得:a=-1,
∴抛物线的解析式为y=-(x-3)2+1或y=-x2+6x-8;

方法二:∵抛物线过点B(0,-8),
∴可设抛物线的解析式为y=ax2+bx-8,
由题意可得:
b
2a
=3
4a?(−8)−b2
4a
=1

∴a=-1,b=6,
∴抛物线的解析式为y=-x2+6x-8;

(3)令-x2+6x-8=0,得x1=2,x2=4,
∴D(2,0),E(4,0),
设P(x,y),
则S△PDE=
1
2
•DE•|y|=
1
2
×2|y|=|y|,
S△ABC=S△BCM+S△ACM=
1
2
•CM•(3+3)=
1
2
×5×6=15,
若存在这样的点P,则有|y|=
1
5
×15=3,
从而y=±3,
当y=3时,-x2+6x-8=3,
整理得:x2-6x+11=0,
∵△=(-6)2-4×11<0,
∴此方程无实数根;
当y=-3时,-x2+6x-8=-3,
整理得:x2-6x+5=0,
解得:x1=1,x2=5,
∴这样的P点存在,且有两个这样的点:P1(1,-3),P2(5,-3).