早教吧 育儿知识 作业答案 考试题库 百科 知识分享

在平面直角坐标系xOy中,抛物线y=ax²+bx+c与x轴交于A、B两点(点A在点B的左侧),与y轴交与点C,点A坐标为(-3,0),若将经过A,C两点的直线y=kx+b沿y轴向下平移3个单位后恰好经过原点,且抛物线的对

题目详情
在平面直角坐标系xOy中,抛物线y=ax²+bx+c与x轴交于A、B两点(点A在点B的左侧),与y轴交与点C,点A坐标为(-3,0),若将经过A,C两点的直线y=kx+b沿y轴向下平移3个单位后恰好经过原点,且抛物线的对称轴是直线x=-2,如果R是抛物线对称轴上的一个动点,是否存在点R使得角BRC=45°,若存在,求出点R的纵坐标,若不存在,说明理由
▼优质解答
答案和解析
存在,点R的纵坐标为:
依题意:C点坐标为(0,3)
又,A点坐标为(-3,0),对称轴是x=-2
可求得抛物线解析式为:y=x²+4x+3
点B的坐标为(-1,0)
令角BRC=45°,设R的纵坐标为y
则BC=根10,BR=根(1+y²),RC=根[4+(y-3)²]
由公式cosB=(a²+c²-b²)/2ac可得
cos45度=【1+y²+4+(y-3)²-10】/2根(1+y²)*根[4+(y-3)²]