早教吧 育儿知识 作业答案 考试题库 百科 知识分享

在平面直角坐标系xOy中,抛物线y=ax2+bx+3经过点N(2,-5),过点N作x轴的平行线交此抛物线左侧于点M,MN=6.则此抛物线的解析式为;若此抛物线与y轴交于点C,在此抛物线上存在一点Q(x

题目详情
在平面直角坐标系xOy中,抛物线y=ax2+bx+3经过点N(2,-5),过点N作x轴的平行线交此抛物线左侧于点M,MN=6.则此抛物线的解析式为______;若此抛物线与y轴交于点C,在此抛物线上存在一点Q(x,y),使∠QMN=∠CNM,则点Q的坐标为______.
▼优质解答
答案和解析
(1)由题意得,MN平行x轴,MN=6,点N坐标为(2,-5),
故可得点M坐标为(-4,-5),
∵y=ax2+bx+3过点M(-4,-5)、N(2,-5),
∴可得
4a+2b+3=−5
16a−4b+3=−5

解得:
a=−1
b=−2

故此抛物线的解析式为y=-x2-2x+3.

(2)设存在点Q(x,-x2-2x+3),使得∠QMN=∠CNM,
①若点Q在MN上方,过点Q作QH⊥MN,交MN于点H,
则QH=-x2-2x+3+5,MH=(x+4)、
QH
MH
=tan∠CNM=4,即-x2-2x+3+5=4(x+4)、
解得x1=-2,x2=-4(舍),
故可得点Q1(-2,3);
②若点Q在MN下方,
同理可得Q2(6,-45).
综上使∠QMN=∠CNM,点Q的坐标为(-2,3)或(6,-45).
故答案为y=-x2-2x+3.(-2,3)或(6,-45).