早教吧 育儿知识 作业答案 考试题库 百科 知识分享

如图,在△ABC中,AB=AC,点D是BC边上的中点,DE、DF分别垂直AB、AC于点E和F.求证:DE=DF.

题目详情
如图,在△ABC中,AB=AC,点D是BC边上的中点,DE、DF分别垂直AB、AC于点E和F.
求证:DE=DF.
▼优质解答
答案和解析
证明:
证法一:连接AD.
∵AB=AC,点D是BC边上的中点
∴AD平分∠BAC(三线合一性质),
∵DE、DF分别垂直AB、AC于点E和F.
∴DE=DF(角平分线上的点到角两边的距离相等).
证法二:在△ABC中,
∵AB=AC
∴∠B=∠C(等边对等角) …(1分)
∵点D是BC边上的中点
∴BD=DC       …(2分)
∵DE、DF分别垂直AB、AC于点E和F
∴∠BED=∠CFD=90°…(3分)
在△BED和△CFD中
∠BED=∠CFD
∠B=∠C
BD=DC

∴△BED≌△CFD(AAS),
∴DE=DF(全等三角形的对应边相等).