早教吧 育儿知识 作业答案 考试题库 百科 知识分享

一组互不相同的自然数,其中最小的数是1,最大的数是25,除1之外,这组数中的任一个数或者等于这组数中某一个数的2倍,或者等于这组数中某两个数之和,问:这组数之和最大值是多少

题目详情
一组互不相同的自然数,其中最小的数是1,最大的数是25,除1之外,这组数中的任一个数或者等于这组数中某一个数的2倍,或者等于这组数中某两个数之和,问:这组数之和最大值是多少?当这组数之和有最小值时,这组数都有哪些数?并说明和是最小值的理由.
▼优质解答
答案和解析
(1)首先25是组中两个数a、b的和,不妨设a>b,而除去1外,组中最小的数必定是2(否则这最小的数不是两个数的和,也不是1的两倍).第三个小的数是3或4,在前一种情况,第四个小的数可能是4、5、6;在后一种情况,第四个小的数可能是5、6、8;如果b>8,那么除去1,2,3,4…b…a…25及1,2,3,5…b…a…25;另外,其它情况各数的和均大于61,而由于b>8,前一种情况,至少要增加一个大于4的数,各数的和仍大于61,后一种情况,各数的和同样会大于61,除非b=10,相应地a=15,即上面所列举的数为61的情况;如果b≤8,那么a≥17,为了将a表示成两个数的和或一个数的两倍,至少要有一个≥9的数,这样各数的和≥1+2+3+b+9+a+25=65>61,因此只有数组1,2,3,5,10,15,25使和取得最小值61.
(2)(1+25)×25÷2=325
答:这组数之和最大值是325,当这组数之和有最小值时,这组数有1,2,3,5,10,15,25.