早教吧作业答案频道 -->数学-->
幻方的填法偶数阶幻方的通用填法注意,是偶数阶的
题目详情
幻方的填法
偶数阶幻方的通用填法
注意,是偶数阶的
偶数阶幻方的通用填法
注意,是偶数阶的
▼优质解答
答案和解析
对平面幻方的构造,分为三种情况:N为奇数、N为4的倍数、N为其它偶数(4n+2的形式)
⑴ N 为奇数时,最简单
(1) 将1放在第一行中间一列;
(2) 从2开始直到n×n止各数依次按下列规则存放:
按 45°方向行走,如向右上
每一个数存放的行比前一个数的行数减1,列数加1
(3) 如果行列范围超出矩阵范围,则回绕.
例如1在第1行,则2应放在最下一行,列数同样加1;
(4) 如果按上面规则确定的位置上已有数,或上一个数是第1行第n列时,
则把下一个数放在上一个数的下面.
⑵ N为4的倍数时
采用对称元素交换法.
首先把数1到n×n按从上至下,从左到右顺序填入矩阵
然后将方阵的所有4×4子方阵中的两对角线上位置的数关于方阵中心作对
称交换,即a(i,j)与a(n-1-i,n-1-j)交换,所有其它位置上的数不变.
(或者将对角线不变,其它位置对称交换也可)
⑶ N 为其它偶数时
当n为非4倍数的偶数(即4n+2形)时:首先把大方阵分解为4个奇数(2m+1阶)子方阵.
按上述奇数阶幻方给分解的4个子方阵对应赋值
上左子阵最小(i),下右子阵次小(i+v),下左子阵最大(i+3v),上右子阵次大(i+2v)
即4个子方阵对应元素相差v,其中v=n*n/4
四个子矩阵由小到大排列方式为 ① ③
④ ②
然后作相应的元素交换:a(i,j)与a(i+u,j)在同一列做对应交换(jn-t+2),
a(t-1,0)与a(t+u-1,0);a(t-1,t-1)与a(t+u-1,t-1)两对元素交换
其中u=n/2,t=(n+2)/4 上述交换使每行每列与两对角线上元素之和相等.
C语言实现
#include"stdio.h"
#include"math.h"
int a[256][256];
int sum;
int check();
void ins(int n);
main()
{
int i,j,n,k,t,p,x;
scanf("%d",&n);
sum=(n*n+1)*n/2;
if(n%2==1)//奇数幻方
{
ins(n);
k=n;
}
if(n%4==2)//单偶数幻方
{
k=n/2;
ins(k);
for(i=0;i for(j=0;j {
a[j+k]=a[j]+2*k*k;
a[i+k][j]=a[j]+3*k*k;
a[i+k][j+k]=a[j]+k*k;
}
t=(n-2)/4;
for(i=0;i for(j=0;j {
if((j {
p=a[j];a[j]=a[i+k][j];a[i+k][j]=p;
}
if((jk-t-1))
{
p=a[j];a[j]=a[i+k][j];a[i+k][j]=p;
}
if((i>=t&&i<=k-t-1)&&(j>=t&&j {
p=a[j];a[j]=a[i+k][j];a[i+k][j]=p;
}
if(j>1&&j<=t)
{
p=a[j+k];a[j+k]=a[i+k][j+k];a[i+k][j+k]=p;
}
}
}
if(n%4==0)//双偶数幻方
{
x=1;
for(i=0;i for(j=0;j a[j]=x++;
for(i=0;i for(j=0;j {
if(i%4==0&&abs(i-j)%4==0)
for(k=0;k<4;k++)
a[i+k][j+k]=n*n-a[i+k][j+k]+1;
else if(i%4==3&&(i+j)%4==3)
for(k=0;k<4;k++)
a[i-k][j+k]=n*n-a[i-k][j+k]+1;
}
}
if(check(n)==1)
{
for(i=0;i {
for(j=0;j printf("%5d",a[j]);
printf("\n");
}
return ;
}
}
int check(int n)//检验是否是幻方
{
int i,j,sum1=0,sum2;
for(i=0;i {
for(j=0;j sum1+=a[j];
if(sum1!=sum) return 0;
sum1=0;
}
for(i=0;i {
for(j=0;j sum1+=a[j];
if(sum1!=sum) return 0;
sum1=0;
}
for(sum1=0,sum2=0,i=0,j=0;i {
sum1+=a[j];
sum2+=a[n-j-1];
}
if(sum1!=sum) return 0;
if(sum2!=sum) return 0;
else return 1;
}
void ins(int n)//单偶数幻方的输入
{ int x,y,m;
x=0;y=n/2;
for(m=1;m<=n*n;m++)
{
a[x][y]=m;
if (m%n!=0)
{
x--;y++;
if(x<0) x=x+n;
if(y==n) y=n-y;
}
else
{
x++;
if(x==n) x=x-n;
}
}
}
奇阶幻方
当n为奇数时,我们称幻方为奇阶幻方.可以用Merzirac法与loubere法实现,根据我的研究,发现用国际象棋之马步也可构造出更为神奇的奇幻方,故命名为horse法.
偶阶幻方
当n为偶数时,我们称幻方为偶阶幻方.当n可以被4整除时,我们称该偶阶幻方为双偶幻方;当n不可被4整除时,我们称该偶阶幻方为单偶幻方.可用了Hire法、Strachey以及YinMagic将其实现,Strachey为单偶模型,我对双偶(4m阶)进行了重新修改,制作了另一个可行的数学模型,称之为Spring.YinMagic是我于2002年设计的模型,他可以生成任意的偶阶幻方.
在填幻方前我们做如下约定:如填定数字超出幻方格范围,则把幻方看成是可以无限伸展的图形,如下图:
Merzirac法生成奇阶幻方
在第一行居中的方格内放1,依次向左上方填入2、3、4…,如果左上方已有数字,则向下移一格继续填写.如下图用Merziral法生成的5阶幻方:
17 24 1 8 15
23 5 7 14 16
4 6 13 20 22
10 12 19 21 3
11 18 25 2 9
loubere法生成奇阶幻方
在居中的方格向上一格内放1,依次向右上方填入2、3、4…,如果右上方已有数字,则向上移二格继续填写.如下图用Louberel法生成的7阶幻方:
30 39 48 1 10 19 28
38 47 7 9 18 27 29
46 6 8 17 26 35 37
5 14 16 25 34 36 45
13 15 24 33 42 44 4
21 23 32 41 43 3 12
22 31 40 49 2 11 20
horse法生成奇阶幻方
先在任意一格内放入1.向左走1步,并下走2步放入2(称为马步),向左走1步,并下走2步放入3,依次类推放到n.在n的下方放入n+1(称为跳步),再按上述方法放置到2n,在2n的下边放入2n+1.如下图用Horse法生成的5阶幻方:
77 58 39 20 1 72 53 34 15
6 68 49 30 11 73 63 44 25
16 78 59 40 21 2 64 54 35
26 7 69 50 31 12 74 55 45
36 17 79 60 41 22 3 65 46
37 27 8 70 51 32 13 75 56
47 28 18 80 61 42 23 4 66
57 38 19 9 71 52 33 14 76
67 48 29 10 81 62 43 24 5
一般的,令矩阵[1,1]为向右走一步,向上走一步,[-1,0]为向左走一步.则马步可以表示为2X+Y,{X∈{[1,0], [-1,0]},Y∈{[0,1], [0,-1]}}∪{Y∈{[1,0], [-1,0]},X∈{[0,1], [0,-1]}}.对于2X+Y相应的跳步可以为2Y,-Y,X,-Y,X,3X,3X+3Y.上面的的是X型跳步.Horse法生成的幻方为魔鬼幻方.
Hire法生成偶阶幻方
将n阶幻方看作一个矩阵,记为A,其中的第i行j列方格内的数字记为a(i,j).在A内两对角线上填写1、2、3、……、n,各行再填写1、2、3、……、n,使各行各列数字之和为n*(n+1)/2.填写方法为:第1行从n到1填写,从第2行到第n/2行按从1到进行填写(第2行第1列填n,第2行第n列填1),从第n/2+1到第n行按n到1进行填写,对角线的方格内数字不变.如下所示为6阶填写方法:
1 5 4 3 2 6
6 2 3 4 5 1
1 2 3 4 5 6
6 5 3 4 2 1
6 2 4 3 5 1
1 5 4 3 2 6
如下所示为8阶填写方法(转置以后):
1 8 1 1 8 8 8 1
7 2 2 2 7 7 2 7
6 3 3 3 6 3 6 6
5 4 4 4 4 5 5 5
4 5 5 5 5 4 4 4
3 6 6 6 3 6 3 3
2 7 7 7 2 2 7 2
8 1 8 8 1 1 1 8
将A上所有数字分别按如下算法计算,得到B,其中b(i,j)=n×(a(i,j)-1).则AT+B为目标幻方
(AT为A的转置矩阵).如下图用Hire法生成的8阶幻方:
1 63 6 5 60 59 58 8
56 10 11 12 53 54 15 49
41 18 19 20 45 22 47 48
33 26 27 28 29 38 39 40
32 39 38 36 37 27 26 25
24 47 43 45 20 46 18 17
16 50 54 53 12 11 55 9
57 7 62 61 4 3 2 64
Strachey法生成单偶幻方
将n阶单偶幻方表示为4m+2阶幻方.将其等分为四分,成为如下图所示A、B、C、D四个2m+1阶奇数幻方.
A C
D B
A用1至2m+1填写成(2m+1)2阶幻方;B用(2m+1)2+1至2*(2m+1)2填写成2m+1阶幻方;C用2*(2m+1)2+1至3*(2m+1)2填写成2m+1阶幻方;D用3*(2m+1)2+1至4*(2m+1)2填写成2m+1阶幻方;在A中间一行取m个小格,其中1格为该行居中1小格,另外m-1个小格任意,其他行左侧边缘取m列,将其与D相应方格内交换;B与C接近右侧m-1列相互交换.如下图用Strachey法生成的6阶幻方:
35 1 6 26 19 24
3 32 7 21 23 25
31 9 2 22 27 20
8 28 33 17 10 15
30 5 34 12 14 16
4 36 29 13 18 11
Spring法生成以偶幻方
将n阶双偶幻方表示为4m阶幻方.将n阶幻方看作一个矩阵,记为A,其中的第i行j列方格内的数字记为a(i,j).
⑴ N 为奇数时,最简单
(1) 将1放在第一行中间一列;
(2) 从2开始直到n×n止各数依次按下列规则存放:
按 45°方向行走,如向右上
每一个数存放的行比前一个数的行数减1,列数加1
(3) 如果行列范围超出矩阵范围,则回绕.
例如1在第1行,则2应放在最下一行,列数同样加1;
(4) 如果按上面规则确定的位置上已有数,或上一个数是第1行第n列时,
则把下一个数放在上一个数的下面.
⑵ N为4的倍数时
采用对称元素交换法.
首先把数1到n×n按从上至下,从左到右顺序填入矩阵
然后将方阵的所有4×4子方阵中的两对角线上位置的数关于方阵中心作对
称交换,即a(i,j)与a(n-1-i,n-1-j)交换,所有其它位置上的数不变.
(或者将对角线不变,其它位置对称交换也可)
⑶ N 为其它偶数时
当n为非4倍数的偶数(即4n+2形)时:首先把大方阵分解为4个奇数(2m+1阶)子方阵.
按上述奇数阶幻方给分解的4个子方阵对应赋值
上左子阵最小(i),下右子阵次小(i+v),下左子阵最大(i+3v),上右子阵次大(i+2v)
即4个子方阵对应元素相差v,其中v=n*n/4
四个子矩阵由小到大排列方式为 ① ③
④ ②
然后作相应的元素交换:a(i,j)与a(i+u,j)在同一列做对应交换(j
a(t-1,0)与a(t+u-1,0);a(t-1,t-1)与a(t+u-1,t-1)两对元素交换
其中u=n/2,t=(n+2)/4 上述交换使每行每列与两对角线上元素之和相等.
C语言实现
#include"stdio.h"
#include"math.h"
int a[256][256];
int sum;
int check();
void ins(int n);
main()
{
int i,j,n,k,t,p,x;
scanf("%d",&n);
sum=(n*n+1)*n/2;
if(n%2==1)//奇数幻方
{
ins(n);
k=n;
}
if(n%4==2)//单偶数幻方
{
k=n/2;
ins(k);
for(i=0;i
a[j+k]=a[j]+2*k*k;
a[i+k][j]=a[j]+3*k*k;
a[i+k][j+k]=a[j]+k*k;
}
t=(n-2)/4;
for(i=0;i
if((j
p=a[j];a[j]=a[i+k][j];a[i+k][j]=p;
}
if((j
{
p=a[j];a[j]=a[i+k][j];a[i+k][j]=p;
}
if((i>=t&&i<=k-t-1)&&(j>=t&&j
p=a[j];a[j]=a[i+k][j];a[i+k][j]=p;
}
if(j>1&&j<=t)
{
p=a[j+k];a[j+k]=a[i+k][j+k];a[i+k][j+k]=p;
}
}
}
if(n%4==0)//双偶数幻方
{
x=1;
for(i=0;i
for(i=0;i
if(i%4==0&&abs(i-j)%4==0)
for(k=0;k<4;k++)
a[i+k][j+k]=n*n-a[i+k][j+k]+1;
else if(i%4==3&&(i+j)%4==3)
for(k=0;k<4;k++)
a[i-k][j+k]=n*n-a[i-k][j+k]+1;
}
}
if(check(n)==1)
{
for(i=0;i
for(j=0;j
printf("\n");
}
return ;
}
}
int check(int n)//检验是否是幻方
{
int i,j,sum1=0,sum2;
for(i=0;i
for(j=0;j
if(sum1!=sum) return 0;
sum1=0;
}
for(i=0;i
for(j=0;j
if(sum1!=sum) return 0;
sum1=0;
}
for(sum1=0,sum2=0,i=0,j=0;i
sum1+=a[j];
sum2+=a[n-j-1];
}
if(sum1!=sum) return 0;
if(sum2!=sum) return 0;
else return 1;
}
void ins(int n)//单偶数幻方的输入
{ int x,y,m;
x=0;y=n/2;
for(m=1;m<=n*n;m++)
{
a[x][y]=m;
if (m%n!=0)
{
x--;y++;
if(x<0) x=x+n;
if(y==n) y=n-y;
}
else
{
x++;
if(x==n) x=x-n;
}
}
}
奇阶幻方
当n为奇数时,我们称幻方为奇阶幻方.可以用Merzirac法与loubere法实现,根据我的研究,发现用国际象棋之马步也可构造出更为神奇的奇幻方,故命名为horse法.
偶阶幻方
当n为偶数时,我们称幻方为偶阶幻方.当n可以被4整除时,我们称该偶阶幻方为双偶幻方;当n不可被4整除时,我们称该偶阶幻方为单偶幻方.可用了Hire法、Strachey以及YinMagic将其实现,Strachey为单偶模型,我对双偶(4m阶)进行了重新修改,制作了另一个可行的数学模型,称之为Spring.YinMagic是我于2002年设计的模型,他可以生成任意的偶阶幻方.
在填幻方前我们做如下约定:如填定数字超出幻方格范围,则把幻方看成是可以无限伸展的图形,如下图:
Merzirac法生成奇阶幻方
在第一行居中的方格内放1,依次向左上方填入2、3、4…,如果左上方已有数字,则向下移一格继续填写.如下图用Merziral法生成的5阶幻方:
17 24 1 8 15
23 5 7 14 16
4 6 13 20 22
10 12 19 21 3
11 18 25 2 9
loubere法生成奇阶幻方
在居中的方格向上一格内放1,依次向右上方填入2、3、4…,如果右上方已有数字,则向上移二格继续填写.如下图用Louberel法生成的7阶幻方:
30 39 48 1 10 19 28
38 47 7 9 18 27 29
46 6 8 17 26 35 37
5 14 16 25 34 36 45
13 15 24 33 42 44 4
21 23 32 41 43 3 12
22 31 40 49 2 11 20
horse法生成奇阶幻方
先在任意一格内放入1.向左走1步,并下走2步放入2(称为马步),向左走1步,并下走2步放入3,依次类推放到n.在n的下方放入n+1(称为跳步),再按上述方法放置到2n,在2n的下边放入2n+1.如下图用Horse法生成的5阶幻方:
77 58 39 20 1 72 53 34 15
6 68 49 30 11 73 63 44 25
16 78 59 40 21 2 64 54 35
26 7 69 50 31 12 74 55 45
36 17 79 60 41 22 3 65 46
37 27 8 70 51 32 13 75 56
47 28 18 80 61 42 23 4 66
57 38 19 9 71 52 33 14 76
67 48 29 10 81 62 43 24 5
一般的,令矩阵[1,1]为向右走一步,向上走一步,[-1,0]为向左走一步.则马步可以表示为2X+Y,{X∈{[1,0], [-1,0]},Y∈{[0,1], [0,-1]}}∪{Y∈{[1,0], [-1,0]},X∈{[0,1], [0,-1]}}.对于2X+Y相应的跳步可以为2Y,-Y,X,-Y,X,3X,3X+3Y.上面的的是X型跳步.Horse法生成的幻方为魔鬼幻方.
Hire法生成偶阶幻方
将n阶幻方看作一个矩阵,记为A,其中的第i行j列方格内的数字记为a(i,j).在A内两对角线上填写1、2、3、……、n,各行再填写1、2、3、……、n,使各行各列数字之和为n*(n+1)/2.填写方法为:第1行从n到1填写,从第2行到第n/2行按从1到进行填写(第2行第1列填n,第2行第n列填1),从第n/2+1到第n行按n到1进行填写,对角线的方格内数字不变.如下所示为6阶填写方法:
1 5 4 3 2 6
6 2 3 4 5 1
1 2 3 4 5 6
6 5 3 4 2 1
6 2 4 3 5 1
1 5 4 3 2 6
如下所示为8阶填写方法(转置以后):
1 8 1 1 8 8 8 1
7 2 2 2 7 7 2 7
6 3 3 3 6 3 6 6
5 4 4 4 4 5 5 5
4 5 5 5 5 4 4 4
3 6 6 6 3 6 3 3
2 7 7 7 2 2 7 2
8 1 8 8 1 1 1 8
将A上所有数字分别按如下算法计算,得到B,其中b(i,j)=n×(a(i,j)-1).则AT+B为目标幻方
(AT为A的转置矩阵).如下图用Hire法生成的8阶幻方:
1 63 6 5 60 59 58 8
56 10 11 12 53 54 15 49
41 18 19 20 45 22 47 48
33 26 27 28 29 38 39 40
32 39 38 36 37 27 26 25
24 47 43 45 20 46 18 17
16 50 54 53 12 11 55 9
57 7 62 61 4 3 2 64
Strachey法生成单偶幻方
将n阶单偶幻方表示为4m+2阶幻方.将其等分为四分,成为如下图所示A、B、C、D四个2m+1阶奇数幻方.
A C
D B
A用1至2m+1填写成(2m+1)2阶幻方;B用(2m+1)2+1至2*(2m+1)2填写成2m+1阶幻方;C用2*(2m+1)2+1至3*(2m+1)2填写成2m+1阶幻方;D用3*(2m+1)2+1至4*(2m+1)2填写成2m+1阶幻方;在A中间一行取m个小格,其中1格为该行居中1小格,另外m-1个小格任意,其他行左侧边缘取m列,将其与D相应方格内交换;B与C接近右侧m-1列相互交换.如下图用Strachey法生成的6阶幻方:
35 1 6 26 19 24
3 32 7 21 23 25
31 9 2 22 27 20
8 28 33 17 10 15
30 5 34 12 14 16
4 36 29 13 18 11
Spring法生成以偶幻方
将n阶双偶幻方表示为4m阶幻方.将n阶幻方看作一个矩阵,记为A,其中的第i行j列方格内的数字记为a(i,j).
看了 幻方的填法偶数阶幻方的通用填...的网友还看了以下:
填空题,1.最小的自然数是(),最小的质数是(),最小的合数是(),最小的奇数是().20以内的质 2020-04-08 …
在极性分子中,正电荷中心同负电荷中心间的距离称为偶极长,通常用d表示.极性分子的极性强弱同偶极长和 2020-05-01 …
已知数列为递增的等比数列,且、分别是方程的两根.(1)求的值;(2)求数列的通项公式;(3)以数列 2020-05-13 …
求教一道数学填空题把正整数排列成如图甲所示的三角形数阵,然后擦去第偶数行中的奇数和第奇数行中的偶数 2020-05-13 …
使用显微镜观察物体时,物距应略(填"大于"或"小于")物镜的焦距,光通过物镜成一(填“放大”或“缩 2020-05-17 …
questionsaboutfamilybackgroundrelationship就填fathe 2020-05-17 …
在细胞信号传递中,只有一个单体分子行使功能的是()A离子通道偶联型受体BG-蛋白偶联型受体C受体丝 2020-05-22 …
解方程5x-3x=54.61.8x+4.2x=5.4巧解题有5个连续的自然数,她们的和是135.这 2020-06-03 …
函数奇偶性的问题!这里有一道题,题目说已知f(x)是R上的偶函数,当X属于(0,正无穷)时f(x) 2020-06-03 …
计算水的偶极矩请根据键的偶极矩通过合成得到水的偶极矩,请一步一步将数代入进行运算.答案是6.167 2020-06-12 …