早教吧作业答案频道 -->数学-->
证明:在同构的意义下,四阶群只有两个,一个是循环群另一个是Klein四元群
题目详情
证明:在同构的意义下,四阶群只有两个,一个是循环群另一个是Klein四元群
▼优质解答
答案和解析
如果是循环群,显然是Z4.(或C4)
如果不是循环,那么所有非单位元的元素阶为2或4(拉格朗姆).设a为其中一个非单位元.如果a为4阶,则a,a2,a3都存在则回到第一种情况循环群,因此现在设没有四阶的元素.则存在a不等于b,都为2阶.
因此G={e,a,b,ab}因为a和b都为2阶,a-1和b-1都是他们本身,因此这个假设是合理,因为ab必须要在这个群的内部(封闭性).
而ba也要在里面,因此ba肯定等于里面三个的其中一个.
如果ba=a,则b=e.如果ba=b,则a=e.都矛盾.如果ba=e,则a=b-1=b.矛盾.
因此ab=ba,同构于Klein
如果不是循环,那么所有非单位元的元素阶为2或4(拉格朗姆).设a为其中一个非单位元.如果a为4阶,则a,a2,a3都存在则回到第一种情况循环群,因此现在设没有四阶的元素.则存在a不等于b,都为2阶.
因此G={e,a,b,ab}因为a和b都为2阶,a-1和b-1都是他们本身,因此这个假设是合理,因为ab必须要在这个群的内部(封闭性).
而ba也要在里面,因此ba肯定等于里面三个的其中一个.
如果ba=a,则b=e.如果ba=b,则a=e.都矛盾.如果ba=e,则a=b-1=b.矛盾.
因此ab=ba,同构于Klein
看了 证明:在同构的意义下,四阶群...的网友还看了以下:
用lingo做一个非线性规划,Min=@sum(Time(i,j):t(i,j)*@sum(ord 2020-05-13 …
FORTRAN中的GIM什么意思?例子:INTEGERX(7)DATAX/10,2045,70,8 2020-06-04 …
1、定义一个N*N的矩阵,输出其对角线元素、上三角矩阵和下三角矩阵;2、编程实现N阶方阵的乘法运算 2020-06-10 …
试证明:ΣC(i,k)(i=0,1,……,k)=2^k,(k∈Z+).这里ΣC(i,k)(i=0, 2020-06-12 …
1.指出以下算法中的错误和低效(即费时)之处,并将它改为一个既正确又高效的算法.ProcDelet 2020-07-14 …
for循环执行顺序c代码main(){for(i=0;i<6;i++&&k++)printf("%2 2020-10-30 …
数学高考题.对于n∈N*,将n表示为n=a0×2^k+a1×2^k-1+a2×2^k-2+……ak- 2020-11-01 …
for循环执行顺序c代码main(){for(i=0;i<6;i++&&k++)printf("%2 2020-11-01 …
设M为n元集,若M有k个不同的子集A1A2...Ak,满足:对于每个i,j属于{1,2,...,k} 2020-11-08 …
用matlab解一下这个微分方程!急.di/dt=(480*m+15*n+20*k*i)*(1+a- 2020-12-12 …