早教吧作业答案频道 -->其他-->
已知点E是正方形ABCD外的一点,EA=ED,线段BE与对角线AC相交于点F,(1)如图1,当BF=EF时,线段AF与DE之间有怎样的数量关系?并证明;(2)如图2,当△EAD为等边三角形时,写出线段AF、BF、E
题目详情
已知点E是正方形ABCD外的一点,EA=ED,线段BE与对角线AC相交于点F,
(1)如图1,当BF=EF时,线段AF与DE之间有怎样的数量关系?并证明;
(2)如图2,当△EAD为等边三角形时,写出线段AF、BF、EF之间的一个数量关系,并证明.
(1)如图1,当BF=EF时,线段AF与DE之间有怎样的数量关系?并证明;
(2)如图2,当△EAD为等边三角形时,写出线段AF、BF、EF之间的一个数量关系,并证明.
▼优质解答
答案和解析
(1)AF=
DE,
证明如下:连接BD交AC于点O,
∵四边形ABCD是正方形,
∴BO=DO,
∵BF=EF,
∴OF=
DE,OF∥DE.
∵BD⊥AC,
∴∠EDO=∠AOB=90°,
∵∠ODA=∠OAD=
×90°=45°,EA=ED,
∴∠EAD=∠EDA=45°,
∴∠OAD=∠AED=∠AOD=90°,
∴四边形AODE是正方形.
∴OA=DE,
∴OF=
AO,
∴AF=
AO=
DE.
(2)AF+BF=EF、AF2+EF2=2BF2等(只要其中一个),
AF+BF=EF的证明方法一:
连接BD交AC于O,在FE上截取FG=BF,连接DG.
与第(1)同理可证∠GDA=45°,
∵四边形ABCD是正方形,△ADE是等边三角形,
∴∠GDE=60°-45°=15°.
∵AB=AD=AE,∠BAE=∠BAD+∠DAE=90°+60°=150°,
∴∠ABE=∠AEB=
=15°,
∴∠ABF=∠GDE.
又∵∠DEG=∠DEA-∠AEB=60°-15°=45°=∠BAC,DE=AD=AB,
∴△ABF≌△EDG
∴EG=AF,
∴AF+BF=EG+FG=EF.
AF+BF=EF的证明方法二(简略):
在FE上截取FG=AF,连接AG.证得△AFG为等边三角形.
证得△ABF≌△AEG.
证得AF+BF=EF.
AF2+EF2=2BF2的证明方法(简略):
作BG⊥BF,且使BG=BF,连接CG、FG,证得△BGC≌△BFA.
证得FC=FE,FG=
BF,
利用Rt△FCG中,得出AF2+EF2=2BF2.
1 |
2 |
证明如下:连接BD交AC于点O,
∵四边形ABCD是正方形,
∴BO=DO,
∵BF=EF,
∴OF=
1 |
2 |
∵BD⊥AC,
∴∠EDO=∠AOB=90°,
∵∠ODA=∠OAD=
1 |
2 |
∴∠EAD=∠EDA=45°,
∴∠OAD=∠AED=∠AOD=90°,
∴四边形AODE是正方形.
∴OA=DE,
∴OF=
1 |
2 |
∴AF=
1 |
2 |
1 |
2 |
(2)AF+BF=EF、AF2+EF2=2BF2等(只要其中一个),
AF+BF=EF的证明方法一:
连接BD交AC于O,在FE上截取FG=BF,连接DG.
与第(1)同理可证∠GDA=45°,
∵四边形ABCD是正方形,△ADE是等边三角形,
∴∠GDE=60°-45°=15°.
∵AB=AD=AE,∠BAE=∠BAD+∠DAE=90°+60°=150°,
∴∠ABE=∠AEB=
180°−150° |
2 |
∴∠ABF=∠GDE.
又∵∠DEG=∠DEA-∠AEB=60°-15°=45°=∠BAC,DE=AD=AB,
∴△ABF≌△EDG
∴EG=AF,
∴AF+BF=EG+FG=EF.
AF+BF=EF的证明方法二(简略):
在FE上截取FG=AF,连接AG.证得△AFG为等边三角形.
证得△ABF≌△AEG.
证得AF+BF=EF.
AF2+EF2=2BF2的证明方法(简略):
作BG⊥BF,且使BG=BF,连接CG、FG,证得△BGC≌△BFA.
证得FC=FE,FG=
2 |
利用Rt△FCG中,得出AF2+EF2=2BF2.
看了 已知点E是正方形ABCD外的...的网友还看了以下:
如图,已知BA,CA分别是∠DBC,∠ECB的平分线,BD⊥DE,CE垂直DE,垂足分别为D,E.则 2020-03-30 …
找出括括号部分与其他发音不同的单词,写在前面的括号内.1.()A.b(ear)B.h(air)C. 2020-04-07 …
如图,D,E,F在三角形ABC的BC,CA,AB边上,且BD/DC=AF/FB=CE/EA=λ,又 2020-04-26 …
求教英语若干题,QAQ辩音1.r{ea}dbr{ea}d()2.st{u}dentb{ui}ldi 2020-05-20 …
求一道算术题答案A=35000B=7000C=A+BF=D+EA:B=D:E若F=38000求D和 2020-07-16 …
∠A+∠B+∠C+∠D+∠E图可以不画了么,就是一个五角星外角定理证180很简单请问怎么用圆周角定 2020-08-01 …
(2012•台州一模)如图,在底面为菱形的四棱锥P-ABCD中,PA⊥平面ABCD,PA=43,B 2020-08-02 …
点A.B.C.D.E在圆上,且弧AB=弧BC=弧CD=弧DE=弧EA,求证五边形ABCDE是圆O点 2020-08-03 …
找出划线发音不同的单词,将编号写在括号里.1A.yummy(u)B.young(o)C.dimsum 2020-10-29 …
配制颜色:你在绘画时常需要配制各种颜色.下面是一组配色操作图.1.A+yellow=orange2. 2020-11-03 …