早教吧 育儿知识 作业答案 考试题库 百科 知识分享

(2012•天门)如图,线段AC=n+1(其中n为正整数),点B在线段AC上,在线段AC同侧作正方形ABMN及正方形BCEF,连接AM、ME、EA得到△AME.当AB=1时,△AME的面积记为S1;当AB=2时,△AME的面积记为S2

题目详情
(2012•天门)如图,线段AC=n+1(其中n为正整数),点B在线段AC上,在线段AC同侧作正方形ABMN及正方形BCEF,连接AM、ME、EA得到△AME.当AB=1时,△AME的面积记为S1;当AB=2时,△AME的面积记为S2;当AB=3时,△AME的面积记为S3;…当AB=n时,△AME的面积记为Sn.当n≥2时,Sn-Sn-1=
2n−1
2
2n−1
2
▼优质解答
答案和解析
方法一:连接BE.
∵在线段AC同侧作正方形ABMN及正方形BCEF,
∴BE∥AM,
∴△AME与△AMB同底等高,
∴△AME的面积=△AMB的面积,
∴当AB=n时,△AME的面积记为Sn=
1
2
n2
Sn-1=
1
2
(n-1)2=
1
2
n2-n+
1
2

∴当n≥2时,Sn-Sn-1=
2n−1
2


方法二:如图所示:延长CE与NM,交于点Q,
∵线段AC=n+1(其中n为正整数),
∴当AB=n时,BC=1,
∴当△AME的面积记为:
Sn=S矩形ACQN-S△ACE-S△MQE-S△ANM
=n(n+1)-
1
2
×1×(n+1)-
1
2
×1×(n-1)-
1
2
×n×n,
=
1
2
n2
当AB=n-1时,BC=2,
∴此时△AME的面积记为:
Sn-1=S矩形ACQN-S△ACE-S△MQE-S△ANM
=(n+1)(n-1)-
1
2
×2×(n+1)-
1
2
×2×(n-3)-
1
2
×(n-1)(n-1),
=
1
2
n2-n+
1
2

∴当n≥2时,Sn-Sn-1=
1
2
n2-(
1
2
n2-n+
1
2
)=n-
1
2
=
2n−1
2

故答案为:
2n−1
2