早教吧 育儿知识 作业答案 考试题库 百科 知识分享

四边形ABCD为正方形,点E为射线AC上一点,连接DE,过点E作EF⊥DE,交射线BC于点F,以DE、EF为邻边作矩形DEFG,连接CG.(1)如图1,当点E在线段AC上时.①求证:矩形DEFG是正方形;②求证:AC=C

题目详情
四边形ABCD为正方形,点E为射线AC上一点,连接DE,过点E作EF⊥DE,交射线BC于点F,以DE、EF为邻边作矩形DEFG,连接CG.
(1)如图1,当点E在线段AC上时.
①求证:矩形DEFG是正方形;
②求证:AC=CE+CG;
(2)如图2,当点E在线段AC的延长线上时,请你在图2中画出相应图形,并直接写出AC、CE、CG之间的数量关系;
(3)直接写出∠FCG的度数.
作业搜
▼优质解答
答案和解析
作业搜(1)①证明:作EP⊥CD于P,EQ⊥BC于Q,
∵∠DCA=∠BCA,
∴EQ=EP,
∵∠QEF+∠FEC=45°,∠PED+∠FEC=45°,
∴∠QEF=∠PED,
在Rt△EQF和Rt△EPD中,
∠QEF=∠PED
EQ=EP
∠EQF=∠EPD

∴Rt△EQF≌Rt△EPD,
∴EF=ED,
∴矩形DEFG是正方形;
②∵∠ADE+∠EDC=90°,∠CDG+∠EDC=90°,
∴∠ADE=∠CDG,
在△AED和△CGD中,
AD=CD
∠ADE=∠CDG
DE=DG

∴△AED≌△CGD,
∴AE=CG,
∴AC=CE+AE=CE+CG;
(2)AC+CE=CG,作业搜
证明:由(1)得,矩形DEFG是正方形,
∴DE=DG,
∵∠ADC=∠EDG=90°,
∴∠ADE=∠CDG,
在△ADE和△CDG中,
AD=DC
∠ADE=∠CDG
DE=DG

∴△ADE≌△CDG,
∴AE=CG,
∴AC+CE=CG;
(3)如图1,当点E为线段AC上时,
∵△ADE≌△CDG,∴∠DCG=∠DAE=45°,
∴∠FCG=∠FCD+∠DCG=135°;
如图2,当点E为线段AC的延长线上时,
∠FCG=∠FCD-∠DCG=45°.