早教吧作业答案频道 -->其他-->
设函数f(x)在[0,1]上连续,且∫10f(x)=dx=0.试证至少存在一点ξ∈(0,1),使f(ξ)+f(1-ξ)=0.
题目详情
设函数f(x)在[0,1]上连续,且
f(x)=dx=0.试证至少存在一点ξ∈(0,1),使f(ξ)+f(1-ξ)=0.
∫ | 1 0 |
▼优质解答
答案和解析
证明:令 F(x)=
f(t)dt−
f(t)dt,则F(x)在[0,1]上连续,在(0,1)内可导.
因为F′(x)=f(x)+f(1-x),且F(0)=F(1)=0,
从而由罗尔中值定理知,至少存在一点ξ∈(0,1),使F′(ξ)=0,
即:f(ξ)+f(1-ξ)=0.
∫ | x 0 |
∫ | 1−x 0 |
因为F′(x)=f(x)+f(1-x),且F(0)=F(1)=0,
从而由罗尔中值定理知,至少存在一点ξ∈(0,1),使F′(ξ)=0,
即:f(ξ)+f(1-ξ)=0.
看了 设函数f(x)在[0,1]上...的网友还看了以下:
设函数f(x)在R上满足f(2-x)=f(2+x),f(7-x)=f(7+x),且在闭区间[0,7 2020-05-13 …
f(x)在(a,b)可导,c∈(a,b),当x≠c时f"(x)>0,f"(c)=0,试证y如题,f 2020-05-16 …
1.设f(x)在[0,1]上连续,且f(0)=f(1),证明:存在x0∈[0,1],使得f(x0) 2020-06-18 …
设函数f(x)在区间0,1上连续,在(0,1)内可导,且f(0)=f(1)=0,f(1/2)=1, 2020-06-22 …
是一道关于微分中值定理的证明题,设函数f(x)在区间[0,3]上连续,在(0,3)内可导,且f(0 2020-07-13 …
设函数f(x)对任意实数x,y都有f(x+y)=f(x)+f(y)且x>0时f(x)>0.1,证明 2020-07-13 …
导数证明题设函数f(x)在[-2,2]上连续,在(-2,2)内可导,且f(-2)=0,f(0)=2 2020-07-16 …
证明不动点假设函数f(x)在闭区间[0,1]上连续,并且对[0,1]上任意点x有0<f(x)<1. 2020-08-01 …
函数f(0)+f(1)+f(2)=3f(3)=1证明f'(x)=0设函数f(x)在[0,3]上连续 2020-08-02 …
关于函数……已知函数y=f(x)的定义域为R,对任意x,∈R,均有f(x+x~)=f(x)+f(x~ 2020-12-31 …