早教吧 育儿知识 作业答案 考试题库 百科 知识分享

已知定义在R上的函数f(x)可导且导函数f′(x)<1,又f(3)=4,则满足不等式f(x+1)<x+2的实数x的取值范围是.

题目详情
已知定义在R上的函数f(x)可导且导函数f′(x)<1,又f(3)=4,则满足不等式f(x+1)<x+2的实数x的取值范围是 .
▼优质解答
答案和解析
因为f′(x)<1,
所以f′(x)-1<0,
令g(x)=f(x)-x
所以y=g(x)在R单调递减,
因为f(3)=4,
所以g(3)=f(3)-3=1,
所以不等式f(x+1)<x+2
即为g(x+1)<g(3)
因为y=g(x)在R单调递减,
所以x+1>3
解得x>2.
故答案为x>2.