早教吧作业答案频道 -->其他-->
(2009•铁岭)△ABC是等边三角形,点D是射线BC上的一个动点(点D不与点B、C重合),△ADE是以AD为边的等边三角形,过点E作BC的平行线,分别交射线AB、AC于点F、G,连接BE.(1)如图(a)所
题目详情
(2009•铁岭)△ABC是等边三角形,点D是射线BC上的一个动点(点D不与点B、C重合),△ADE是以AD为边的等边三角形,过点E作BC的平行线,分别交射线AB、AC于点F、G,连接BE.
(1)如图(a)所示,当点D在线段BC上时.
①求证:△AEB≌△ADC;
②探究四边形BCGE是怎样特殊的四边形?并说明理由;
(2)如图(b)所示,当点D在BC的延长线上时,直接写出(1)中的两个结论是否成立;
(3)在(2)的情况下,当点D运动到什么位置时,四边形BCGE是菱形?并说明理由.
(1)如图(a)所示,当点D在线段BC上时.
①求证:△AEB≌△ADC;
②探究四边形BCGE是怎样特殊的四边形?并说明理由;
(2)如图(b)所示,当点D在BC的延长线上时,直接写出(1)中的两个结论是否成立;
(3)在(2)的情况下,当点D运动到什么位置时,四边形BCGE是菱形?并说明理由.
▼优质解答
答案和解析
证明:(1)①∵△ABC和△ADE都是等边三角形,
∴AE=AD,AB=AC,∠EAD=∠BAC=60°.
又∵∠EAB=∠EAD-∠BAD,∠DAC=∠BAC-∠BAD,
∴∠EAB=∠DAC,
∴△AEB≌△ADC(SAS).
②方法一:由①得△AEB≌△ADC,
∴∠ABE=∠C=60°.
又∵∠BAC=∠C=60°,
∴∠ABE=∠BAC,
∴EB∥GC.
又∵EG∥BC,
∴四边形BCGE是平行四边形.
方法二:证出△AEG≌△ADB,得EG=AB=BC.
∵EG∥BC,
∴四边形BCGE是平行四边形.
(2)①②都成立.
(3)当CD=CB (∠CAD=30°或∠BAD=90°或∠ADC=30°)时,四边形BCGE是菱形.
理由:方法一:由①得△AEB≌△ADC,
∴BE=CD
又∵CD=CB,
∴BE=CB.
由②得四边形BCGE是平行四边形,
∴四边形BCGE是菱形.
方法二:由①得△AEB≌△ADC,
∴BE=CD.
又∵四边形BCGE是菱形,
∴BE=CB
∴CD=CB.
方法三:∵四边形BCGE是平行四边形,
∴BE∥CG,EG∥BC,
∴∠FBE=∠BAC=60°,∠F=∠ABC=60°
∴∠F=∠FBE=60°,∴△BEF是等边三角形.
又∵AB=BC,四边形BCGE是菱形,
∴AB=BE=BF,
∴AE⊥FG
∴∠EAG=30°,
∵∠EAD=60°,
∴∠CAD=30°.
∴AE=AD,AB=AC,∠EAD=∠BAC=60°.
又∵∠EAB=∠EAD-∠BAD,∠DAC=∠BAC-∠BAD,
∴∠EAB=∠DAC,
∴△AEB≌△ADC(SAS).
②方法一:由①得△AEB≌△ADC,
∴∠ABE=∠C=60°.
又∵∠BAC=∠C=60°,
∴∠ABE=∠BAC,
∴EB∥GC.
又∵EG∥BC,
∴四边形BCGE是平行四边形.
方法二:证出△AEG≌△ADB,得EG=AB=BC.
∵EG∥BC,
∴四边形BCGE是平行四边形.
(2)①②都成立.
(3)当CD=CB (∠CAD=30°或∠BAD=90°或∠ADC=30°)时,四边形BCGE是菱形.
理由:方法一:由①得△AEB≌△ADC,
∴BE=CD
又∵CD=CB,
∴BE=CB.
由②得四边形BCGE是平行四边形,
∴四边形BCGE是菱形.
方法二:由①得△AEB≌△ADC,
∴BE=CD.
又∵四边形BCGE是菱形,
∴BE=CB
∴CD=CB.
方法三:∵四边形BCGE是平行四边形,
∴BE∥CG,EG∥BC,
∴∠FBE=∠BAC=60°,∠F=∠ABC=60°
∴∠F=∠FBE=60°,∴△BEF是等边三角形.
又∵AB=BC,四边形BCGE是菱形,
∴AB=BE=BF,
∴AE⊥FG
∴∠EAG=30°,
∵∠EAD=60°,
∴∠CAD=30°.
看了 (2009•铁岭)△ABC是...的网友还看了以下:
下列地图不属于自然地图的是()A.地形图B.交通图C.气候图D.水文图 2020-05-16 …
湖北的小红到深圳旅游,要你当参谋,你建议她选择哪种地图:A政区图,B、交通图,C、地形图、D、土地 2020-05-17 …
四川汶川发生了罕见的大地震,我想知道在那里,应该查阅()A.导游图B.交通图C.中国政区图D.世界 2020-07-03 …
二元一次方程组的交集和并集如何做例题:知己集合A={(x,y)|2x-y=0},B={(x,y)| 2020-07-29 …
若A并B=A并C,则一定有A.B=CB.A交B=A交CC.A交B的补集=A并C的补集D.B交A的补 2020-07-30 …
已知集合A={(x,y)|2x-y=0},B={(x,y)|3x+y=0},C={(x,y)|2x 2020-08-02 …
已知集合A={(X,Y)|2X-Y=0},B={(X,Y)|3X+Y=0},C={(X,Y)2X- 2020-08-02 …
高一数学集合证明:1.A并(A交B)=A2.A交(A并B)=A3.C交(A-B)=(A交C)-(B 2020-08-02 …
昆明的小玲打算到杭州叔叔家探亲,想了解一下乘车路线,她应该选择()A、导游图B、交通图C、卫星摄像图 2020-11-14 …
某班学生准备到郊外山地进行越野活动,设计行动方案时主要应参考的地图是()A.地形图B.交通图C.导游 2020-12-10 …