早教吧作业答案频道 -->数学-->
在平面直角坐标系中,点O是坐标原点,点P(m,-1)(m>0).连接OP,将线段OP绕点O按逆时针方向旋转90°得到线段OM,且点M是抛物线y=ax2+bx+c的顶点.(1)若m=1,抛物线y=ax2+bx+c经过点(2,2
题目详情
在平面直角坐标系中,点O是坐标原点,点P(m,-1)(m>0).连接OP,将线段OP绕点O按逆时针方向旋转90°得到线段OM,且点M是抛物线y=ax2+bx+c的顶点.
(1)若m=1,抛物线y=ax2+bx+c经过点(2,2),当0≤x≤1时,求y的取值范围;
(2)已知点A(1,0),若抛物线y=ax2+bx+c与y轴交于点B,直线AB与抛物线y=ax2+bx+c有且只有一个交点,请判断△BOM的形状,并说明理由.
(1)若m=1,抛物线y=ax2+bx+c经过点(2,2),当0≤x≤1时,求y的取值范围;
(2)已知点A(1,0),若抛物线y=ax2+bx+c与y轴交于点B,直线AB与抛物线y=ax2+bx+c有且只有一个交点,请判断△BOM的形状,并说明理由.
▼优质解答
答案和解析
(1)∵线段OP绕点O按逆时针方向旋转90°得到线段OM
∴∠POM=90°,OP=OM
过点P(m,-1)作PQ⊥x轴于Q,过点M作MN⊥y轴于N,
∵∠POQ+∠MOQ=90°
∠MON+∠MOQ=90°
∴∠MON=∠POQ
∴∠ONM=∠OQP=90°
∴△MON≌△OPQ
∴MN=PQ=1,ON=OQ=m
∴M(1,m)
∵m=1
∴M(1,1)
∵点M是抛物线y=a(x-1)2+1
∵抛物线经过点(2,2)
∴a=1
∴y=(x-1)2+1
∴此抛物线开口向上,对称轴为x=1
∴当x=0时,y=2,
当x=1时,y=1
∴y的取值范围为1≤y≤2.
(2)∵点M(1,m)是抛物线y=ax2+bx+c的顶点
∴可设抛物线为y=a(x-1)2+m
∵y=a(x-1)2+m=ax2-2ax+a+m
∴B(0,a+m)
又∵A(1,0)
∴直线AB的解析式为y=-(a+m)x+(a+m)
解方程组
得ax2+(m-a)x=0
∵直线AB与抛物线y=ax2+bx+c有且只有一个交点,
∴△=(m-a)2=0
∴m=a
∴B(0,2m).
在Rt△ONM中,由勾股定理得
OM2=MN2+ON2=1+m2
∴BM=OM
∴△BOM是等腰三角形.
∴∠POM=90°,OP=OM
过点P(m,-1)作PQ⊥x轴于Q,过点M作MN⊥y轴于N,
∵∠POQ+∠MOQ=90°
∠MON+∠MOQ=90°
∴∠MON=∠POQ
∴∠ONM=∠OQP=90°
∴△MON≌△OPQ
∴MN=PQ=1,ON=OQ=m
∴M(1,m)
∵m=1
∴M(1,1)
∵点M是抛物线y=a(x-1)2+1
∵抛物线经过点(2,2)
∴a=1
∴y=(x-1)2+1
∴此抛物线开口向上,对称轴为x=1
∴当x=0时,y=2,
当x=1时,y=1
∴y的取值范围为1≤y≤2.
(2)∵点M(1,m)是抛物线y=ax2+bx+c的顶点
∴可设抛物线为y=a(x-1)2+m
∵y=a(x-1)2+m=ax2-2ax+a+m
∴B(0,a+m)
又∵A(1,0)
∴直线AB的解析式为y=-(a+m)x+(a+m)
解方程组
|
得ax2+(m-a)x=0
∵直线AB与抛物线y=ax2+bx+c有且只有一个交点,
∴△=(m-a)2=0
∴m=a
∴B(0,2m).
在Rt△ONM中,由勾股定理得
OM2=MN2+ON2=1+m2
∴BM=OM
∴△BOM是等腰三角形.
看了 在平面直角坐标系中,点O是坐...的网友还看了以下:
好人一生平安,已知双曲线x2/a2-y2=b2=1(a>0,b>0)的两条渐好人一生平安,已知双曲 2020-04-08 …
=-O:-P;-):OB-):-$:-*::'(:-\O:-):-[:-/oO:-D:-Xx-(: 2020-07-24 …
C、H、O、N、P、S这6种元素是组成细胞的主要元素,它们占细胞鲜重的百分比正确的是()A、C>H 2020-07-28 …
化简下列二次根式根号π分之s(π是圆周率)根号45分之p的平方(p>0)根号n的平方分之20m(n 2020-07-30 …
已知真命题:过抛物线y2=2px(p>0)的顶点O作两条互相垂直的直线,分别交抛物线于另外两点M、 2020-07-31 …
(2013•天津)已知双曲线x2a2-y2b2=1(a>0,b>0)的两条渐近线与抛物线y2=2p 2020-07-31 …
(2014•南通三模)如图所示,在xoy平面y>O的区域内有沿y轴负方向的匀强电场,在y<O的区域 2020-07-31 …
下列比较错误的是()A.稳定性:HCl>H2S>H3PB.酸性:HNO3>H3PO4>H2SiO3C 2020-12-07 …
已知抛物线C:x2=2py(p>0)的焦点为F,A,B为抛物线上异于坐标原点O的不同两点,抛物线C在 2021-01-01 …
孩子不懂,只好求助朋友们啦,先谢谢^O^二次函数y=ax²+bx+c的图象如图一所示,若M=4a+2 2021-01-22 …